The NetBSD Guide

(2024/01/01)

The NetBSD Developers

The NetBSD Guide
by The NetBSD Developers

Published 2024/01/01 06:49:50

Copyright © 1999, 2000, 2001, 2002 Federico Lupi

Copyright © 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,
2019, 2020, 2021, 2022, 2023, 2024 The NetBSD Foundation

All brand and product names used in this guide are or may be trademarks or registered trademarks of their respective owners.

NetBSD® is a registered trademark of The NetBSD Foundation, Inc.

Table of Contents

Purpose of this guide xvii
I. About NetBSD xviii
1 What is NEtBSD7oouiiiiiiiiciie ettt 1
1.1 The Story Of NEetBSDcoiuiiiiieiieiieciieeteetestt ettt ettt ettt et et e s beesbaesaaesanas 1

L2 NetBSD fEaAtUIEScc.ooviiiieiiiiiiiiinieccceee e 1

1.3 Supported PLAFOTTISoovviiriiieiiiiieiteete ettt ettt sttt e st st e st e b e saresaeas 2

1.4 NEtBSD’S tAIZEE USETS...ueevieruieeiieeieeriieeteeteesttesteeteesttesatesateebeesaaessseesbeesstesssesnseessaesssesnses 2

1.5 Applications fOr NEtBSDcocuiiiiiiiiiiieeiteiteeee ettt ettt sttt 2

1.6 HOW t0 Bt INEIBSDuiiiiiiiiieeeeeeteeee ettt sttt ettt et st 2

II. System installation and related issues 1
2 Installing NetBSD: Preliminary considerations and preparationsce.eceeeeceerueereenueneennennenns 2
2.1 Preliminary CONSIAETALIONScc.eeveeruiiriierieeniteeieeieenite et ete et e st e st et e sitesatesabeesbeesaeesaees 2

2.1.1 DUAI DOOLING....ceutieiieeiieeiie ettt ettt ettt ettt st e b e b s 2

2.1.2 NetBSD on emulation and virtualization............cccceeeveeereenieniennieeneenieeieeseeeneeenn 2

2.2 INStAll PIEPATALIONS «..eeuveenieeriieeieeteenite ettt ete ettt s e eate e bt e sabesateebeesbeesateeabeesbeesaeesaees 2

2.2.1 The INSTALL dOCUMENLeovuiiiiiiiieiieniieeieeieeeieeeite ettt et snee s 3

2.2.2 PATTILIONS ..eetitieiieieeiieie ettt ettt ea et st e s b e st e e e bt et e sbe et e nbesseeneesneens 3

2.2.3 Hard disk Space reqUITCIMENLSeeruerueeuieriieiieiesieeeesteeiteieetee e seeeeesee e e saene 4

2.2.4 NEtWOTK SEELINEZS «..veveeuietieietieiierie ettt ettt sttt e s be st e e et e et e sae et e seesseeaesaeens 4

2.2.5 Backup your data and operating SyStems!ccccceeeviererienienieieneeee e 4

2.2.6 Preparing the installation Media.........ccceoeeieririeniniireeeee e 4

2.2.6.1 Booting the install system from USB...........ccccoviiiiiiniiiiniiencicecee 4

2.2.6.2 Booting the install system from CD..........ccccoceniiiiiininiinnenceecee 5

2.3 ChECKIISt ..ttt sttt s 5

3 EXamPple INSTAllAtION.......co.iiiiiiiiiieiieteeeee ettt ettt 6
3.1 INEFOQUCTION ..ttt sttt et s 6

3.2 The inStallation PIrOCESScccuertireeruererienieniieteeteetenteeetete st et et ebeesae bt etesbesasesesbeeseeneeenee 6

3.3 KeyDOArd 1aYOULcccveeiieiieiieeiteite ettt ettt st ettt e st e saae e beesanessbeenbeessaenanesnnas 6

3.4 Starting the iNStallation.........c.covviiriieiiieieeeere ettt e e saeeeaees 7

3.5 MBR PATTITIONS .euvveiiieiiieiieriieeteettesiteete et esttestesebeesbeesatesaseesbeesssesssesnsaenseesseesnseensaenseenns 10

3.6 DiSKIaDE]l PATTItIONS. ...ecveetieriieeieeitienieeieeieesiteste sttt e sitesabeenbeesaeesatesabeesseesaeesaseensaenseenas 13

3.7 Setting the diSK NAME......cc.eiriiiiiiiiieiie ettt ettt e st st et e st e sabeenbaenaee e 17

3.8 LaSt ChANCE !ouiiiiiiiiiicic e 18

3.9 The diSk Preparation PrOCESSeevuerruerrieerierierieenieestesteesteestestesseesseesseesseesseesseesas 19

3.10 INSLAllAtION LYPE ..eevvierieiieriieeieeiee st ettt ettt ettt et sab et esbeesabesabeebeesaeesaneenbaensee e 20

3.11 Choosing the installation MEdIUMcocueirierieriiieiierieeieeeeterte et 21
3.11.1 Installing from CD-ROM / DVD / install image media...........cccceceecvereeuennenee. 22

3.11.2 Installing from an unmounted file SyStem........c..ccceeevireeniririenenieeneceneenees 23

3.11.3 Installing via FTP and Network configuration.............ccccccoveecveneniecencencneene. 25

3.11.4 Installing via NES ..o e 31

312 EXITACHIZ SELS ...eeuveiiiuiiiieienieeeenieeit ettt et ettt et e e st e n e sae e s ene e e saeennes 32

3.13 System CONfIGUIAIONcc.eruiiiiiiiieiieiieeee ettt st s 33

3.14 Finishing the installationc..ooiiiiiiiiiiiee e 39

4 Upgrading NetBSDoooiiiiiieeeee ettt et st s be et ne s 41
4.1 USING SYSIMST.eutteutetieiiesteetieteett et e sttt e ste st es e sbeestesteeaeetesbeensesbeeseenseeseensesbeentenseeseenseeseenes 41

iii

A 1.1 OVEIVIEW ..ttt ettt eete e et e e ee et e e e e eetaee e e eeetbeseeeeetsaeeeeeetaaeeeeenareseeeens 41

4.1.2 The INSTALL dOCUIMENTccueriirriiiniieiiniieienieneetenteerere et st neseeeae 41

4.1.3 Performing the UpZrade.........ccccoeeceeriirieniinieienenieeeeeeeceeeee e 41

4.2 USING SYSUPZIAL.....cviviiiiiiiiiiiiiiiitiicieeet st 47
II1. System configuration, administration and tuning 49
5 The first steps on NetBSDc..ooiiiiiiiiiiieee et 50
5.1 TrOUDIESNOOTNGcoueiiiiiiiiiiiceieeetee ettt sttt s 50
5.1.1 BOOE PTODIEIMScveiiiiiiiiiiiiieeiceee e s 50

5.1.2 Misconfiguration of /etC/IC.CONT.........cccoiriirierierieirineneteeeeeteesre e 50

5.2 The man COMMANAcooiiiiiiiiriieiieeeee ettt ettt st sbe e bt saaeeseeesaee e 51
5.3 Editing configuration filesccoerieiirieiiieeere ettt 52
S OGN .ttt ettt et h ettt e a e bt she et e b st et e bt enteebeenean 52
5.5 Changing the root PASSWOIccueiiiiiirtieiirte ettt sttt et saeeeesaeenees 53
5.6 AQGING USEIS ...veeneetieiietiettete ettt ettt ettt et e bt s h et e e bt ea e bt e bt e tesbeesb e beeetenteeseeneesaeenean 53
5.7 ShadOW PASSWOIMS........eouiruieiiitieierteei ettt ettt ettt sttt et e st et e st sbe et e b et e b sbeeneesbeeneen 53
5.8 Changing the keyboard 1ayout............ccoevieriiiiiiiniiieeseee et 54
5.9 SYSLEIM LM ...ttt ettt ettt ettt et sb et b bt et e bt e b sbe et e b e sb e et e ebeeneesbeeneen 54
5.10 Secure Shell (SSN(1))...uiiciuiiieiie ettt ettt ettt e e et e e ear e e eaaeeeraeean 55
5.11 Basic configuration in /et c/rC. CONT ittt 55
5.12 BasiC NEIWOTK SEINESceviruiriiieriieiiniietenieet ettt ettt ettt ebe e saeeaees 55
5.13 Mounting @ CD-ROMcccociiiiiiiiiiiiiietineetee sttt ettt 56
5.14 Mounting @ flOPPY «e.eveveemeeniinieienierieereetese ettt sttt 56
5.15 Installing additional SOTEWATEcccueerieeciieniienieeieeteete ettt saee e 57
5.15.1. Using packages fTom PKESIC...cc.uevruieriierieriieieeieeriie ettt eie e 57
5.15.2. Storing third-party SOfTWATEcocueerieerieriiiieerieerte ettt 58

5.16 SECUTILY QLETES .euviiiiieiieiieiiieeie ettt ettt ettt e st e st e et esbeesabesabeebeesaeesaseenbaenseenas 58
5.17 Stopping and rebooting the SYSIEM........cccueeriirieriiierienieeie ettt et 58
6 EdItING ...coviiiiiiiiiiicici e 59
6.1 INLTOAUCING VI cuveiniiiiiiieieeiierite ettt ettt ste bt e st st e e bt esbeesatesabeebeesaeesabeenbaenseenas 59
6.1.1 The Vi INEITACEccooiiiiiiiiiiiiiiiiici e 59

6.1.2 Switching to Edit MOAEcoouiiiiiiiiiiieiieieeeeeeee et 59

6.1.3 Switching Modes & Saving Buffers to Filesccccccceeveiinieiininicninicicee 60

6.1.4 Yanking and PUtting..........cccoocieviiriiiiiiniiiineeeceeeseeeeeeee e 60
6.1.4.1 Oops I Did Not Mean to do that!...........c.oceniiiininiininiiiiecceeeeen 60

6.1.5 Navigation in the Buffercocoooiiiiiiiieeeeeee 60

6.1.6 Searching a File, the Alternate Navigational Aidccccoevievininiinniencnene. 61
6.1.6.1 Additional Navigation Commands..........ccccceevueereeneenrieeneeneenienneeneenns 61

6.1.7 A SAMPLE SESSION ...eeneiiiiiriiieiieniie ettt sttt et esbe e saaesaee s 61

6.2 CONFIGUIINEZ Vi..etiutetieiieiietiete ettt ettt ettt s a et et estesteeatenaesae et e beestenteeseeneesaeenean 62
6.2.1 EXIENSIONS 10 . ©XTC weeuteruieiirtieierteeitenteetteteeteetesteeetestesst e tesseeneesaeestenbesseensesseenes 63

6.2.2 DOCUMENEATION ...ttt eite et ettt e e st eetesbe et e e eaeeste et estenbesseeneesbeenes 63

6.3 USING taZS WILI Vi.euiiiiiiiitieiiiieeeeee ettt sttt s 64
7 The TC.A SYSTEIM...c..eiiiiiieiiitieiteeie ettt ettt et b et e e bt et e bt e st et s bt et e beestenteebeeneesbeenean 65
T 1 BASICS .ttt et et b et sttt eae s 65
7.2 THE TC.A SCIIPLS .euteteiiieteetteteete ettt ettt ettt et b ettt ebe e bt et e st e b et e b enee 66
7.2.1 Packages inStalling rC.d SCIIPLS ...c..eeverieriieriiniieienertenieniteeeice et 66

7.3 The Role of rcorder and 1c.d SCIIPLScouerveeieriirieniinieieieeteieeitee et 67

7.4 Additional REAAING.....cccueeviiiiiiiiiiiieeieeie ettt ettt sttt et st esbeesaaesaee s 67

8 CONSOIE AITVETS....c.eouiiiiiiiiiiii i st 68
BL1 WSCOMS ..t 68
81T WSAISPIAY ...ttt ettt ettt et ettt st e be e st n 68
8.1.1.1 Virtual Consolesccoeiruiruiiiiiiiiiiiiiiicicicceece e 68

8.1.1.1.1 Getting rid of the message WSDISPLAYIO_ADDSCREEN:
DEVICE DUSY tereurrieeeriiiieeeeeiirtteeeseiereesssnseeeessanseeeesssssseessssnseeeesnns 69
8.1.1.2 50 lines text mode With WSCONS......c.c.eevueiriiriiiiiiiienieeieeieeie e 70
8.1.1.3 Enabling framebuffer consolec.cccceeiiiiiiiiininiiniceeeee. 70
8.1.1.4 Enabling scrollback on the console.............ccccceeeveniriieninieiiniecnenee, 71
8.1.1.5 WSCONS and COLOTS. ...ccueeruiiriiiiieniiiniieeicete ettt 71
8.1.1.5.1 Changing the color of kernel messagescccceeveevereereenuenncnns 71
8.1.1.5.2 Getting applications to use colors on the console....................... 72
8.1.1.6 Loading alternate fONLS.........cccoeeeriererienienieieeieee et 72
L2 WSKDA ..t 73
8.1.2.1 Keyboard Mappings..........ceeerueeueerieruerienientieteeieeeesiestesieseeeeeseeeeeseeenees 73
8.1.2.1.1 Hacking wscons to add a Keymap.........cccceveeeeenenienenennenenens 73
8.1.2.2 Changing the keyboard repeat Speed...........cccceveeriererienenienieneeieneeneen 73
8L 1.3 WSIMOUSE....eviiiiitiieieteit ettt sttt ettt s st eae b 74
8.1.3.1 Serial MOUSE SUPPOITccueruieiiriieieriiriieientiete ettt ettt eaees 74
8.1.3.2 Cut&paste on the console with wsmoused.........cc.ccoceeveerenieniencnncnennee. 74
9 The X WINAOW SYSIEINLveviiiiiiiiieieiieetenieeit ettt sttt ettt sttt et bt ebs et sbeeeesbeeneen 75
0.1 WRHAt 18 X117 XOTE?..eeuiieuieiinieetenieeiteteeteete sttt sttt ettt ettt st e bbbt sbe e saeenees 75
0.2 CONFIGUIATIONcvteniiiiiiiettetesteete ettt ettt ettt b ettt ebe et sbeesb e b e sb s et e sbeeneesaeennen 76
0.3 The KEYDOATMcoviiiiieiiieiieeieeeete ettt ettt ettt st et e st e st e e s e e saeesaseensaenseenas 76
9.4 THE MONILOTeeiiiiiiiiiiiieicieie ettt s 76
0.5 STATTING Xt ureeiieiieiieeie ettt et e st e et e et e bt e satesateebeesatesabeenbeesseessbesasaenseenseesaseensaenseesns 77
0.6 CUSLOMIZING X..eeuteiuiieiieiieiieeieesiteste et et esttesitesteesbeesssesabeesbeesseesssesnseeseesseesaseenseenseenas 77
9.7 Other window managers or desktop ENVIrONMENLSc.eecveerreerierieerrieenieeniesieeseenieenns 78
9.8 Graphical 10Zin With XAMccciiiiiiiiiiiiiieieeee ettt 78
9.9 Using multiple Or TEMOLE X SEIVETS.....ceiuerrtieriierierieenieesterteenteesitestesteesseesseesseesseesseesa 79
9.10 FUIther TESOUICESc.couiiiiiiiiiiiiiiiicictcce e e 80
LO AUAIO ..ot 81
10.1 Configuring the default audio deViCe..........ccoeeieriinienirieieiirecee e 81
10.2 Configuring the mixer and VOIUMEcceeuiriiriinieniinieieieeeeteeeeee e 81
10.2.1 Setting default mixer settings 0N bOOLcceeeeciirieiienirieeienicecieeeeeeeeeeeen 82
10.3 PSEUAO QUAIO AEVICES.....eevieuiiriiieiieniieeiieeit ettt ettt sttt e b e saeesaee s 82
10.4 Recording and playback commands.............cccoecueviiiieiiniiniiiinieieeeneeeee e 83
10.4.1 QUAIOPIAY(L) ..o 83
10.4.2 aUdIOreCOrd(1) .. .ueeieieeeeee et 83
10.4.3 QUAIOCI(L) ettt sttt 83
10.5 MIDI SUPPOTT ..eeneteiieeiteiieeiteete ettt ettt ettt ettt st e bt e sate st e bt e saeesateesbeesaeesaeean 83
10.5.1 MEAITECOTA(T) oottt e e e e e et e e eaae e e aeeeeans 83
10.5.2 MIAIPIAY (L) 1ttt ettt ettt sttt e a et b eneas 84
10.6 Intel HD AUIiO AEVICESeeuiiiieiieiiiiieie ittt st 84
10.6.1 Built-in and jacks: DACS/ADCScoveiirierieniieienitetene st 84
10.6.2 HDMI/DisplayPort audio.........ccccevereenienierienieniieienieeeenie sttt 84
11 POWET MANAZEINENLcoutitieiiiiiitiete ittt ettt ettt et sbt et s b eate et e bt e bt s bt estenbeebsenbesbeeneenaeeneen 85

11.1 Basic power management COMMANGS.........cc.eereerverrieerieerueesieeneeseessseesseesseesseesseesseenns 85

11.1.1 Powering off or rebooting the SYStemMc.c.eevuerriierieriieriienieeeieeieesiee e 85
11.1.2 Using ACPI sleep states (suspend and reSUmMe)ceceeeeveerveerverceeeneereenseeennes 85
11.1.3 Suspending and resuming individual deviCescc..evvuerveeniiriiersieenienienieenne 86
11.1.4 Adjusting CPU frequency at TUNLIME.......ccoveereerrieenierieeieeneeeee et 86
11.1.5 Using IEEE 802.11 (Wi-Fi) power saving modec.ccoccecveneeieniineenueneenne. 87

11.2 Sensors and MONIIOTINEcc.eeueriirieriirieieieeeete ettt eee 87
11.3 An introduction t0 POWET.ccueruirieiiiriieieiieieie ettt s 88
11.3.1 Example: using powerd to suspend on lid closecccoccoceeveniiiicniiniencnennne. 88
11.3.2 Example: reducing CPU frequency when unplugged...........ccocociiininninennn. 89

T2 PIINEINE ..ottt sttt st s et st e s a e et en e sae s 91
12.1 Enabling the printer daemoncoccoeverirerinienieieeeeneeeneeeeeeeee et 91
12.2 Configuring /et C/PrintCapP e eeieirerenteterentestertesessesseeeneesessesaesseseneneeneeseanes 92
12.3 Configuring GhOSESCTIPLcoueriirtirieieieiieiinerestetetet ettt sttt ene s 93
12.4 Printer management COMMANAScc.ecveurrirerertenieretentnteetenrenseeeneesesresaesseseseneeneesennes 94
12.5 REMOLE PIIMEINEZ ..ottt ettt sttt ettt ettt et a st e st et eae b enes 95
13 Using removable MEdia......cccueruirieriiiieieiieiteieett ettt ettt sb et sbeeeesaeeaees 97
13.1 Initializing and using USB flash drivescc.coceiirieiiiinneiieeeeeeeee 97
13.2 Initializing and using floppy disKS......cccerueiieriiieniieeee e 99
13.3 How to uS€ @ ZIP diSK.....ccooiiuiriiiiiieieicieiieinecceeteeeeeee ettt 100
13.4 Reading data CDs with NetBSDccccoociiiiiiiiiiiiieeeccceteceee e 101
13.5 Reading multi-session CDs with NetBSD.......c..cccceviviiviniiiininiiicneeienceeie e 102
13.6 Allowing normal users t0 access CDScoeivieririeriiniiniininicesteeeetec e 103
13.7 Mounting an ISO IMAaZEcceeeriiriiriiniiiieieneeteteeeete ettt 103
13.8 Using video CDs With NetBSDccccovoiiiiiiiniirieiieetee et 104
13.9 Using audio CDs with NetBSDc..cooiiiiiiiiieiiicieeeeteste ettt 104
13.10 Creating an MP3 (MPEG layer 3) file from an audio CD.........cccccoervenirinnicncnnnn. 105
13.11 Using a CD-R writer with data CDS........cocceeviiiiiiiiiiniieniieeieeeeee et 105
13.12 Using a CD-R writer to create audio CDScoocviivieiiieniiiieiieiiesieeeeeesee e 107
13.13 Creating an audio CD from MP3S.......cccoiviiiiiiiiiiiiieieeeeieete ettt 107
13.14 Copying an audio CDcocciiiiiiriiinieiiieieeteee ettt sttt et s eabees 107
13.15 Copying a data CD With tWO dIiVES.........cevueeriieriiiiiiriierie ettt 108
13.16 Using CD-RW 1@WIItables......c.c.eeviiriiiiiiiiiiieiieeieeiteste ettt 108
13.17 DVD SUPPOIT..cveiutiiieienieiteteeieet ettt sttt ettt et et ae st ne b e s e aesaeesnesaeennens 108
13.18 Creating ISO images from a CDccccocieviiiiiiiiiiniiicnceeceneeeee e 108
13.19 Getting volume information from CDs and ISO images..........c..cccceeeeceeninveencncnnens 109
14 The cryptographic device driver (CGD)cocoociiriiiiiiiniiiiieec e 110
T4 T OVETVIEW vttt ettt ettt ettt et ettt st et sbt e st e bt et e sabeeabeebeenaee 110
14.1.1 Why use diSK encryption?.........c.coeeeeeerriienieniienieententesieeieesiee st 110
14.1.2 Logical Disk DIIVETScceeiuieieriiiiieieiieeiieieetceee sttt s 110
14.1.3 AVAILADIIEYeovereecieiceiirccccete ettt 111

14.2 Components of the Crypto-Graphic Disk SYStem.........ccceverriererieienieieneecee e 111
14.2.1 Kernel driver pSeudO-dEVICEceevuerueruieriiniieienitetesie ettt 111
14.2.2 CIPRETS ..ottt ettt ettt sttt e e st ebe b eneens 111
14.2.3 ODSO0IEte CIPREIScouveiieiieiiiiieie sttt ettt s s 111
14.2.4 Verification Methodsccovieriiiiiiiniinieenteese e 112

14.3 Example: encrypting your diSK.......c..coceriiiiriiniiienineeneeterestees et 113
14.3.1 Preparing the diSKcccoeiiiiiiiiiiniiieeceeecteeeeeeee e 113

Vi

14.3.2 Scrubbing the diSK........ceeviieriiieiienieniteiieeeete ettt siee s 113

14.3.3 Creating the COd ..ueiiiiienieeieeitesteete ettt sttt et e st e beesaeesaneeas 114
14.3.4 Modifying configuration filesceceeviienieniiiniiinieniesiceeestese e 115
14.3.5 REStOTING AALA ..eevveriiiiiiiiieeie ettt ettt ettt sttt et e st s beesbeesaeeeas 116

14.4 Example: encrypted CDS/DVDS.......coviiiiiiiiiiiiiieeiteiteste ettt 116
14.4.1 Creating an encrypted CD/DVDccccccooiiiininiiniiiieneccneeeceecee e 116
14.4.2 Using an encrypted CD/DVDc..cccooiiiiiiinininieceeeceeeeere e 118

14.5 Example: encrypted iSCST devViCes........cceoievieriiiiiiiinieiinieeeeeceeresieeeere et 119
14.5.1 Creating an encrypted iISCST deVICecceviriiiniriiiniiicienieeec e 119
14.5.2 Device INTtaliSAtioncoooverieiiiienieniieieeiteete ettt 120
14.5.3 Unmounting the Encrypted Device...........cccoeiiiiiiiiiiniiiiiiniiciicccneens 122
14.5.4 NOIMAL USAZE ...cevveiiiiiiieiieeieeieeeteete ettt ettt sttt st sae e i 122

14.6 Suggestions and WarlingS..........cccuerieierierienerteeienteeteesteste et ste st este st eeesteeseenaesaeeneens 123
14.6.1 Using a random-key cgd fOr SWapcccceeeiirieienieieeeeeeee e 123
14.6.2 WAITHIIES ...eouveeeienieitieieet ettt sttt et e et e e s bt e et e be s bt e e s be e st enaeeseeaesbeeneens 124

14.7 FUrther REAINGcc.coouiiiiiiiiieieee ettt ettt 124
BiIbHOZIAPRY ...ttt s 124

15 Concatenated Disk Device (CCD) CONfIGUIAtIONcc.eerveruiiieniieieniiniieienieetenieeiee e 126
15.1 Install phySical MEdiacoceeviriiiiiniiieii ettt 126
15.2 Configure Kernel SUPPOTIt........cc.eecuiriirieriiiiiienieeteteeieete sttt sttt st 127
15.3 Disklabel each volume member of the CCDccccecvviriiinienicniiiiiicnecicieeeeenes 127
15.4 Configure the CCDoiiiiiiiiieieeete ettt sttt st s 129
15.5 Initialize the CCD deVICEcoivuivieiiiiiiiiiiicriccec e 129
15.6 Create a 4.2BSD/UFS filesystem on the new CCD deviceccceevvvrrvueeneervenrueenneene 130
15.7 Mount the fILESYSIEIMcveeruieriieiierieeieeieeree ettt et ebeesieesebeebeebeesebeenbeenseenens 131
16 NetBSD RAIDITAME ...ttt st 132
16.1 RAIDframe INtrodUCHIONc..eoueerierierienieniieientietetc ettt st 132
16.1.1 About RAIDITAMEooveriiiiiiiiiiniieieicrtceceteee ettt 132
16.1.2 A warning about Data Integrity, Backups, and High Availability 132
16.1.3 GEtting HeIP...oveevieeieiiieeieee ettt sttt st 132

16.2 Setup RAIDITAME SUPPOTE ..covviriiiiiieniieriieieeiteeite ettt sttt ettt esite e eabees 133
16.2.1 Kernel SUPPOTL ...cuveriieiiiriieeiieieerteett ettt sttt sttt et sate b e saeesaaeeas 133
16.2.2 Power Redundancy and Disk Caching..........ccccoecveevienieniiiinieniieniinieneenene 133

16.3 Example: RAID-1 ROOt DiSKcocuooiiiiiiiiiiieiicieiieeceneceeeseeeseeeere e 134
16.3.1 Pseudo-Process OULINEccceerieriiiiiiiniienienieetestesteeeete st 135
16.3.2 Hardware REVIEWccc.eerieiiiiiiieniieeiteieeiteete ettt 136
16.3.3 Initial Install on DisKO/WdAOcooieriiriiiiniiiieteeeeeeee e 137
16.3.4 Preparing Disk1/Wdlcccooiiiiiiiiiiie e 138
16.3.5 Initializing the RAID DeVICEc.ccooiiiiiiiiiiiiiiiiciceececec e 142
16.3.6 Setting up FIleSYSIEMScouieuieiiriieieiieeiieieete et 143
16.3.7 Migrating System t0 RAIDcccooiiiiiiiiiinieeseeee e 145
16.3.8 The first boot With RAIDccooiiiiiiiiiiieeeeee e 147
16.3.9 Adding DiskO/Wd0 to RAIDccoccoririminiiiiiiieineneeceeeeeeeeseseeeeeeienes 148
16.3.10 Testing BOOt BIOCKSc..ccouiiieiiiiiieieeiteee et 149

17 NetBSD Logical Volume Manager (LVM) configuration............ccccceceeverieeienenienenceneneeens 153
17.1 Anatomy of NetBSD Logical Volume Manager...........cccccoeevuererienieneeieneneeneneeens 153
17.2 Install phySical MEiacoceeriiriieiiiniiieiieeeeteeee ettt s 155
17.3 Configure Kernel SUPPOTIt........coeeviiririeriiiiiienieeteteeteete sttt st 156

Vii

17.4 Disklabel each physical volume member of the LVMcccocviviiiiiiniinniinieeieen, 156

17.5 Create PhySical VOIUMEScc.eeviiiriiinieiiieieeieesiie ettt ettt ettt enaees 158
17.6 Create VOIUME GIOUPeovuieriiriieiienie st eieeite sttt ettt e st ste et esbeesabesabeebeesatesaseenbeas 159
17.7 Create Logical VOIUMEcoouiriiiiiiiieiiieieeitese ettt ettt sttt 159
17.8 Example: LVM with Volume groups located on raidlcecceevierienienneenienniennnen. 160
17.8.1 Loading Device-Mapper driVer...........c.cocvecueeiieienereenieneerenieeeereeeeneseenens 160
17.8.2 Preparing raid1 insStallationcccceeerieiiininiienieeeieneeeceece e 160
17.8.3 Creating PV, VG on raid disK.........ccceceiriiiiniiniieniiiieienieeeseee e 162
17.8.4 Creating LV’s from VG located on raid diskccccoceeeeieniiiininiincnnennn, 163
17.8.5 Integration of LV’s in to the SYStem..........cceeiriiniiiieninieeniceceeee s 163

18 Pluggable Authentication Modules (PAM)cccceiieeiiriiiniinienieenteeteeteeee sttt 165
L8.1 ADOUL ..ttt b ettt e h ettt et e bt eh e et e bt et e bt ene e tesneeneans 165
18.2 INTIOAUCTION -ttt ettt ettt et sttt e s beebe e e st e e st e teeneeaesneeneans 165
18.3 Terms and CONVENTIONSec.eeuirtieieniieiieieeteete st ete bt eteetesteetesbesste e sbeeseesteeseenaeseeeneans 165
18.3.1 DEfINILIONS ...ttt ettt sttt sttt et enee e eeesbeeneens 165
18.3.2 USaZe EXAMPIES ...c..eeueeiieiieiieiieie sttt ettt ettt sttt sbe e 167
18.3.2.1 Client and SEIVET Qre ONEccerueerueruereentenienieeieereesieeeenteeseeneeeeeenees 167

18.3.2.2 Client and SEIVer are SEPArate...........coeeeeruereeruerreeruenueseenieseenueseeuens 167

18.3.2.3 SAMPIE POLICY ..ottt s 168

18.4 PAM ESSENHIALS ...ccueitiiiieieiiieieittetee ettt ettt ettt st sbe et e eaaens 168
18.4.1 Facilities and PrimitivVescccecereriererienienieieneetene st sieeeeente e sieeanens 169
18.4.2 MOAUIES. ..ottt ettt ettt st st 169
18.4.2.1 Module NamMiNG........coeeuerierienieniieienieetenie ettt eveesaesreennens 169

18.4.2.2 Module VErsioningcccceveevuereerienieneeniereenienieerenieseeniesseeneesieesnens 170

18.4.2.3 Module Pathccceviiiiininiiiiniiietccceeteeeeeee e 170

18.4.3 Chains and POLICIESeevuierieriiieniienienit ettt ettt sttt seee e ebeeaeesee 170
18.4.4 TTANSACTIONS ...eeuviniieuiiiieieeienitetenieeit ettt st et sateste sttt esbe bt eaesbeeanenbeseeenee 171

18.5 PAM CONfIGUIALION. ... ceeutieiieriieiiieiienite st eteenieesite et enteesttesbeebeenbeessbesaseenbeesasesasesnseas 172
18.5.1 PAM POLICY fIlES....ceiuiiiiieiieeieeitesiteet ettt sttt st 172
18.5.1.1 The /etc/pam.conf file eviiieiiiiieeeeeee e 172

18.5.1.2 The /etc/pam.d AIT€CLOTY ..cccuteruiirieriieniieeieeieesiee et 172

18.5.1.3 The policy Search Orderccoouervueriieenienienieeierteee et 173

18.5.2 Breakdown of a configuration line...........cccceeevieriiiiniienieniiiinienieniceceeeeene 173
18.5.3 POLICIES ...ttt ettt s s 173

18.6 PAM MOAUIES ..ottt ettt et sttt ebe e 174
18.6.1 CommOn MOAUIES.......cc.eeriiriiiiiiniieriteieeteete ettt et 174
18.6.1.1 pam_deny(8)......cccuecueruirieriieieeeieieeeeee et e 174

18.6.1.2 pAM_ECHO(8) ...eeuiieiiiiiiiiiiieieeiteste ettt 174

18.6.1.3 PAM_EXEC(8) c.veenreeniiiiieniieeieeieenite ettt sttt sttt et 175

18.6.1.4 pam_ftPUSEIS(8)....eeueeeuieiirieeiieieeieeiete ettt s 175

18.6.1.5 PAM_ZIOUP(8) -euveeeenieirieiieiieiieie ettt ettt ettt et 175

18.6.1.6 PAM_GUESL(8) ..ceuvieienieiieiieieeiieie sttt ettt b et 175

18.6.1.7 PamM_KIDS5(8) ...eeueiiieieiieiieieee et 175

18.6.1.8 PAM_KSU(8) ..uveeueireieieiieeiieieei ettt 175

18.6.1.9 pam_Iastlog(8)....ccueeueruirieiieiieie ettt 175

18.6.1.10 pam_1ogin_acCess(8)coereeruerirrieniirienierieenienieeie st eee e ae e 176

18.6.1.11 pam_nologin(8)ccceevuererierienieieniietenie ettt s 176

18.6.1.12 pam_permit(8)ceeeeeruerierienieienieetenie ettt ettt 176

viii

18.6.1.13 pam_radits(8)....eecveerueerieeieeiieniie ettt ettt ettt 176

18.6.1.14 pam_1hoStS(8)....eevuieiieiiieieeieeniie ettt 176

18.6.1.15 pAM_TOOLOK(8) ..eeeuveeuiieriiieieeieeniie ettt ettt ettt et et 176

18.6.1.16 pam_SECUTELLY(8) ...eeveerurieieiiieniieeteeiee sttt ettt et 176

18.6.1.17 pAM_SEI(8)..veerueieiieiieiieeieeeete ettt 176

18.6.1.18 pAM_SSN(8) c.veiiiiiiiiiieiieeeetee s 177

18.6.1.19 PaAM_UNIX(8) .eervveeieeiieiiiieieeieerite ettt ettt et et 177

18.6.2 NetBSD-specific PAM Modulesc..cocueoiiiieiiininienenieieneeecie e 177
18.6.2.1 PAM_SKEY(8) .eevvevieiiiiieieieeeee ettt e 177

18.7 PAM Application Programming............c.ccocceeeiiiiiiiinieniinieeneneeiesiceeere e 177
18.8 PAM Module Programmingccccoceviiieiieniiieiiieeiese et 177
18.9 Sample PAM APPLCALION......c..oouiiiiiiiiiiiiicieieeeecee ettt 178
18.10 Sample PAM MOGUIEcocueiriiiiiiiiiiiiieieetee ettt st 181
18.11 Sample PAM Conversation FUNCIONcccooirieiiirieniiiieieieeieesicee e 183
18.12 Further REAAINGcooueiuiieieiieiieiet ettt et 185
BibLIOZIAPRY ...ttt 185

19 Tuning NEetBSDooiiiiiiiiiieceee ettt st 186
19,1 INTEOAUCTION ..ttt ettt ettt et sttt be s bt e tesb et e bt sbeenbesbeeneens 186
LO. 1.1 OVEIVIEW ..ottt ettt ettt bt et a e sttt est et saeeaesbeennens 186
19.1.1.1 What is Performance Tuning?..........ccccecevereeneninnienieniieneneenieseeeens 186

19.1.1.2 When d0oes ONe tUNE?.......cc.coveerierieieniinienienieeienieerenieeiteneeeveesaesbeennens 186

19.1.1.3 What these Documents Will NOt COVETccocevvervienenienineenienennns 187

19.1.1.4 How Examples are Laid OUtcccccoeevienireeneninicnenieniceeeieneenens 187

19.2 TUNING CONSIACTAIONS ..cvveeereeirieiieriieeieeieesteetteebeesieesteessbeesseesseessseesseenseesssesssesnseessns 187
19.2.1 General System Configurationc.eecveerveereeriueesieeneeniesreenieeseesneesseesseenens 187
19.2.1.1 Filesystems and DiSKScccecveerieriiernienienieeieenieesreeie e 187

19.2.1.2 Swap ConfigUration..........cecueeeueerieeiieesieenienieeieeneesreseeesieesinesanesnvees 188

19.2.2 SYSIEIM SEIVICES c.uvveeuvieniieriieeieeiiestesteeteesttesitesteesseesstesabeeseesseesasesnseesseessnesns 188
19.2.3 The NetBSD Kernel.......ccccoiveiiiniinininiiiinieenceeeeseeeseeeeee e 189
19.2.3.1 Removing Unrequired DIiVeTsccceceerierierieenienienieeieeseesee e 189

19.2.3.2 Configuring OPHONSeevverrieerierieeieenieeete et esieesteeeeesbeesieesaeeenrees 189

19.2.3.3 SyStemM SENZS ...eevveevieriiieieeieeniie ettt ettt e st e e b e s esaeeeabeas 189

19.3 Visual Monitoring TOOISccueruiiriierieriieieereesiie ettt ettt sttt este e ebees 189
19.3.1 The top Process MONILOTcccereevierierieiiinieienieeeete et 190
19.3.1.1 Other Neat Things AboUt TOPcocueevieieriiriierinieienieeeieeeee e 191

19.3.2 The SySStat ULIILYcocveieeieiieeeierceeeeeeeeee e 191

19.4 Monitoring TOOLScocuiiuiiiiiiiiiiiei ettt 192
L £ | SRS 193
1.4, 2 TOSTAL ..ottt ettt ettt sttt ettt ettt ettt et te bt e et e e et ene e teeneenten 193
1014, 3 DS ettt ettt a e et e bt e ettt e teeaeetesaeeneen 194
1944 VINISTAL ...ttt ettt st sttt st st b e bt e st b e bt e i 195

19.5 NEtWOTK TOOLS .uveeiiiriiieiieieee ettt st st 196
TO.5.1 PING wneieiieiteteetetet ettt sttt ettt 196
19.5.2 trACRIOULR. ...ttt sttt ettt sae et ete s b et e bt e st eneesaeebesbeeneens 197
19.5.3 NMEESLAL ..cueeee ettt ettt ettt b et a e st e b b eneens 198
19.5.4 tCPAUIMIP. ..ottt ettt et et b et b e s et saeebesbeeneens 200
19.5.4.1 Specific tcpdump USAZEcovuerieieniirieniirieieniteienieeitenie e 200

19.6 ACCOUNTING ...uentieniiiieitenieeit ettt ettt sttt et e bt et bt et e s bt sbtebesbeeste bt sbeeaesbeennens 201

19.6.1 ACCOUNTINGeoivieeiieeiieitieeieeie ettt ettt ettt et e site st e e bt e saeesatesnbeesaeesaneeas 201

19.6.2 Reading Accounting Informationccceeeerieriiiinienieniiienieeniesee e 201
19.6.2.1 JaStCOMIMuiiiiiiiiiciiiciee e 201

19.6.2.2 5. e 202

19.6.3 How to Put Accounting to USEcocueriieriierieniiieniienie sttt siee s 203

19.7 Kernel Profilingcocoiiiiiiiiiiiiiiieieiteeseceeteeete ettt s 203
19.7.1 Getting SLArtedc..cocveiiieieiieiieiereeeeeee ettt ettt s enens 203
19.7.1.1 USING KGMON ..ottt s 203

19.7.2 Interpretation of kgmon OULPULcceeieiiiiiiiiniiieeneceeeeeee e 204
19.7.2.1 F1at Profilecveiiiriiriieicieicineneceecee ettt 204

19.7.2.2 Call Graph Profile...........coccoueerinininiiiiiiininicnesceeceese e 205

19.7.3 PUttING 16 10 USE ..cuveueeiiiiriiiericieieteitette ettt ettt 206
19.7.4 SUMMATY ..ottt e s s s 207

19.8 SYStEmM TUNINGcveviiiieieiieiinieet ettt ettt ettt sttt s et eeaeeneas 207
19.8.1 USING SYSCLL. .ttt sttt 207
19.8.2 tMPFS S MES ..ot 208
19.8.3 JOUIMAIING . ..c.eeivieiiitieieiteeee ettt sttt et 208
TOBALES ..ottt st 209

19.9 KerNel TUNING ..c..eetiiieiieieiiteieet ettt ettt ettt st et sb et sb e st eaesbeenaens 209
19.9.1 Preparing to Recompile a Kernel...........cocoeoeviiiininiininiiiinieiecceceens 210
19.9.2 Configuring the Kernelccooeriiiininiiiiniiiinieiieeseeneetee e 210
19.9.2.1 Some example Configuration Itemscocevereerieneniieninieenenennens 210

19.9.2.2 SOME DITVETSeoviiiiiiiieicieiereeeeee et 211

19.9.2.3 MUlti Passccooiiiiiiiiiiiiiicicicccceseeeeese e 212

19.9.3 Building the New Kernelc.ccccerieriiiiiinieniecieeeeee et 213
19.9.4 Shrinking the NetBSD Kernelccccoeciviiiiniiniiiiiieieeic et 213
19.9.4.1 Removing ELF sections and debug information.........c..ccecceccevereennee 213

19.9.4.2 Compressing the Kernelcoocueevieeiienieniieniienienieeieeeeseeeee e 214

20 NetBSD VErieXEC SUDSYSTEIMN...cuuiitieriieriierieenieenttesteesteenteesttesteeteessaesssesseesseesssesnsesssessseesnesns 216
20.1 HOW It WOTKS ...ooiiiiiiiiiiiieicircecee s s 216
20.2 SIZNATUTES FI1E .uvieiiieieiiie ettt ettt sttt be e st et e beesabeeateeabeas 216
20.3 Generating fiNZEIPIINTSccuverieriteeriierierieerteeste sttt et e st e e be et esbeesabeebeenbeesabesnsesabeas 216
20.4 SEHCLIEVELS ..cviiiiiiiiicicc e 218
20.5 Veriexec and layered file SYStEIMScc.cecveruirienieriieieniieieit et 218
20.6 Kernel CONfIGUIATIONcoouirieriiriieiiiieice ettt ne st s 219
21 Bluetooth 0n NetBSDoooiiiiiiiiee ettt ettt b e 220
21,1 INEFOAUCHION ...ttt ettt et sttt e sbe e st et e bt e sanesaeeeanees 220
21.2 Supported HardWarec..c.cccoiiiiiiiiiiiiiiieeeeeeeeee e e s 220
21.3 System COnfIZUIAtIONcccevrueruiriirterieieteieeientenenteeetee ettt ettt s e e e eseeaeeae e 222
21.4 Human Interface DEVICEScevueiuieiiriieiiie ettt 222
21401 MICE ettt ettt ettt 222
21.4.2 KeYDOAITS ..ottt et 224

21.5 Personal Area NEtWOTKINGcccceevueririinerieieitieeste ettt 225
21.5.1 Personal Area Networking USETccceeceeriirieriinenienienieiesiteee e 226

21.6 Serial CONNECHIONScuteteiiriteienteeiesteeitentesitetesteeete st ette et eteestesbeestesbeeseentesaeenaesbeennens 227
217 AUAIO .t bbb s e 229
21.7.1 SCO Audio Headsetscoeeueieiriniiniinienieieieine ettt 229
21.7.2 SCO Audio Handsfreecceeueieiiiriiniinienieieieinescecereeeee e 230

21.8 ObJect EXCRANGE......cccuiiiiiiiieieeiteiteee ettt sttt sttt et ebees 232

21.9 TrOUDIESNOOTINZ ..c.vveeuieeiieriieeieeie ettt ettt ettt ettt et e sabeebe e beesabesaseeabeas 232
22 MiSCEIlanEOUS OPETALIONS ...eeuvveruriruiieniieniteeieesteesttesiteeteesteesttesabeebeesstesssesaseesbeesstesasessseessaesanenns 233
22.1 Installing the DOOt MANAZETcecvterrierieriieiierie ettt ettt sttt e sabesaeeebees 233
22.2 Deleting the diSKIabel.......cccoviiiiiiiiiiiiiriieeee ettt 233
22.3 SPAKETeonveitentiiietete ettt sttt et st e a e st ne e 233
22.4 FOrgot 100t PASSWOIATcoouiriiiiiiiiiiiieieie ettt ettt e ne s nne e eanens 234
22.5 PasswOrd file 1S DUSY?......coouiiiiiiiiiiiiiieece et 234
22.6 Adding a new hard diSKcccooiiiiiiiiiiiiiiic e 235
22.7 How to rebuild the devices in /deVcoceeviirieriiiiiiiiienieeeeeeee e 237
IV. Networking and related issues 239
23 Introduction to TCP/IP NetWOrKing........ccccecieieririiieneiieieeieeese ettt 240
23,1 AUGICIICE ...ttt ettt et b et e s et e e ae e tesb e et e bt e st e nteeneeaesbeennens 240
23.2 Supported Networking ProtoCOLSccceririereiiiienieeene et 240
23.3 Supported MEdiac.coeueeieriiiieieeieeee ettt st 240
23.3.1 BHREINCL ...eeiiiiiiiceeieeecccet ettt 241
23.3.2 IEEE 802.11 (Wi-F1) oottt 241
23.3.3 Serial LINe....couiviiieieieiieiiiienceeetette et 241

23.4 TCP/IP Address FOrmMatccoociriiviiiieiieieiiiiisieececeeee st 242
23.5 Subnetting and ROULINGc..coceevieiiiiiriiiiiiticeteeetee et 244
23.6 NaAmME SErVICE COMCEPLS...ceuviuteietieiienieeitenteritetesteeetenteettentesbeesaesbeessesbesatestesseeneesueesnens 246
23.0.1 /@ C/NOSES ertteriieieeritente et et et e s e et et e st e st e et e e ateett e st e ebeenteesnbeenbeebeennes 247
23.6.2 Domain Name Service (DINS)ccoiiiiiiiioiiiecieeeee et e 248
23.6.3 Network Information Service (INIS/YP) ..ccooouvviiiiioiiiieeeeeeeeeee e, 248
2364 OLNET ..ot e 248

23T IPVO...eiiiiiie e e 249
23.7.1 What 200d 18 TPVO?....ccuiiiiiiiiiiiiieeeeteeteeteet ettt st e 249
23.7.1.1 Big@er AddIess SPACEcecveerueeriiriieeriieniie ettt st eaee e 249

23. 7. 1.2 MODILLY ..ot 249

23.7.1.3 SECULTLY c.veetieiieiie ettt ettt ettt et sttt sb e e st e st e esabesaseeabees 249

23.7.2 Changes t0 IPVAcouiiiiiieeee ettt st 250
23.7.2.1 AQAIESSING......cveiiiiiiieiiiieieieeie ettt ettt 250

23.7.2.2 Multiple AddIeSSES.......ccueruerierieriieieniieienieeeereseereste et 252

23.7.2.3 MUtICASTINGc.veiiieiiiieiereeeeese ettt s 253

23.7.2.4 Name Resolving in IPVOccccocoiiiiiiiiiiiiiccceeccceeee 253

24 Setting up TCP/IP on NetBSD in PractiCeccccocievieriirieiieniieicniiieeieseeresieeeeae e 255
24.1 Overview of the network configuration filesccooceeeeririenenieiesiee e 255
24.2 Connecting to common LAN SEIUPScccueevviirieriiiiieieenieeieeeesiee sttt 256
24.2.1 Connecting using IEEE 802.11 (Wi-Fi).....cccoviiiiiiiiiiieeeeceec e 256

24.3 Manually creating a small LANcocooiiiiiiiiieee e 257
24.4 Connecting to a home/office ISP with PPPOEccoccoiiiiiiiiiiiiecee e 260
24.4.1 Configuring @ VLANoooiiiiiie ettt 261
24.4.2 Setting up MSS ClamMPINGccceevueriiiiiniieieieeee ettt 262
24.4.3 Obtaining IPv6 addresses via Prefix Delegation.........c..cocceeevievencncencnennen. 262

24.5 Setting up an Internet gateway with NPF ... 263
24.6 Setting up a NetwWork bridge dEVICEccevuiriereririieniieieie et 264
24.6.1 Bridge eXamPlecooueriieiiniiiieieieeieieetet ettt st 264

Xi

24.7 Ensuring interfaces are initialized in the correct order...........ccoccveeevererieninicencneenens 265

24.8 Some useful ComMMANSc.cceoeririiniriiiiintecreeteeee et 266
25 The Internet SUPEr SETVET INELAccceeviiriiiirieniieiieeieeriee sttt sttt e stesateebeesaaesaeeens 267
25.1 OVEIVIBW vttt ettt ettt ettt st sttt e a e st e e st esne bt s e eaesaeenesreennens 267
25.2 What 1S IN@HAToouieiiiiiieieeieenete ettt ettt st e 267
25.3 Configuring inetd - /et c/inetd. CONT ciimiirieieniieeere et eee st e snesaeeenens 267
25.4 SEIVICES = /@1 C/ SEIVICES toitreriiieriieeitieeeitieesitteesteeesreesssseeetseesnsseessseessseeessseeessseens 269
25.5 ProtOCOIS - /€L C/PTOLOCOLS trriiieiiieeitieeeiteeesieeesreeessreeessseeesreessseesseaesssesessseeensseens 269
25.6 Remote Procedure Calls (RPC) - /L C/TDC wiiiiieeiiieeeiieeeiee ettt 269
25.7 Allowing and denying hosts - /etc/hosts. {allow, deny} .ceeiereniereeneneenns 270
25.8 AddINg @ SEIVICEceoiiiiiiiiiiieieiiieie et st 270
25.9 When to use Or NOt t0 USE INEEAeeuveruieiiieiieie et s 271
25.10 Other RESOUICES......cc.eeeiiiriiieieiiieiteete ettt sttt ettt enees 272
26 The Domain Name SYSIEIMceouiririiriieiieieeieete sttt ettt e et e et e sbesbe e e s beeseesaeeseeaesaeeneens 273
26.1 DNS Background and CONCEPLS........ccueeeeririerieniieienieeiente ettt eite e nee e 273
26.1.1 NAMING SEIVICESveeuietieiieiieiietesitete ettt et sttt e ste st e e st eseesaesaeenaesaeeneens 273
26.1.2 The DNS NAMESPACEceuveeiriieieriieienieeiteteettete st te e st ete st eiee st saeenaesaeeneens 273
26.1.3 ReSource ReCOIdS.oouiiiiriiiiiiiiiiieieeteeee ettt 274
20.1.4 DEIEZATION ...ttt sttt ettt sttt ettt b et e et st e e bt eneens 275
26.1.5 Delegation to Multiple SEIVETScoceruerieriiniierieneeienenitetestcete e 276
26.1.6 Secondaries, Caching, and the SOA record.........cococeveniivininieniniencneene 276
26.1.7 Name ReSOIUON.ccueruiriiiiiieiiiieieieete ettt st 277
26.1.8 Reverse ReSOIULIONc..cocveviiriiriiiiiiinicniteieeieetenieet ettt e 277

26.2 The DINS FUIES ..ottt sttt s s 278
260.2.1 /€LC/NAMEA .. CONT wttirtieriieeieeiteeittesteeteesttestesiteebeeseeesteesabeeseesseesssesnseenseesnns 279
26.2.1.1 OPLIONS ..veeneieiieeiieeieente st eteesieesite et e bt e staesbeebeesbeesabesaseenseesasesasesnseas 281

26.2.1.2 Z0NE “AIVEIZE.0TE” ..eeiiiriiieiieiteeiteeieette st ettt sbee st eaeebeesaesaaeensees 281

26.2.2 /etc/namedb/10CAlROSE tiiiierieerieeiieenteeteeteestesteste et esitesateebeesaaesaneens 282
26.2.3 /etc/namedb/zone . 127 .0 . 0 itrieereerieenieeieeieenitestesieesseesitesateenbeesaeesaneens 283
26.2.4 /et c/namedd/ divVerge . 0L G e eereeeeeeeereeeeeeeitrreeeeeerereeeeentrreeeeeenarreaeens 283
26.2.5 /etc/namedb/1.168.192 wiiiiiieeieeieeniteeie et e site sttt et be e saneea 284
26.2.6 /etc/namedb/TO0t . CACRE ittt ittt ettt ettt ettt sttt e saae e 284

260.3 USING DINS ...ttt ettt st st n e st ne s ennens 285
26.4 Setting up a caching Only NAMEe SEIVETccecueruieieriierieniireeieneereeeeere e 286
26.4.1 TeStiNG the SEIVETcc.evuieiiriieieierieereeeteteee ettt sttt st s eanens 287

27 MaIL QNA NEWS ...ttt ettt sttt et s e et e bt e s bt e sabesate e bt e satesateebeesbtesateeas 289
271 POSHIX ettt ettt ettt 291
27.1.1 Configuration of eneric MAPPINGc..cecvecveruiereirierienenierentieeesie e seeanens 292
27.1.2 Testing the CONfIGUIAtION.c..covecveieiriiriirieeieeeee sttt 293
27.1.3 Using an alternative MTAccccceoiiiirininineennneeceeeeeetee e 293

272 FRECHMALL ...ttt et sttt et sbe e 293
27.3 Reading and writing mail With MUtt........c.cccociiininiiiiiiininnicccee e 294
27.4 Strategy for receiving Mailccoevierieiieiieininineicee e 295
27.5 Strategy for sending mail..........occoererieiiiiieinininece e 295
27.6 Advanced mMail tOOLSceoirierieriiiereeiee ettt sttt 295
27T NEWS WIH TNttt ettt b e st enaesbeenans 297
28 Introduction to the Common Address Redundancy Protocol (CARP)ccccccevceviniinincnnns 299
28.1 CARP OPCIation.....c.ceoueruieriiriieieniieiienieeitenie sttt sttt ette sttt esaesbeeste b sbte st saeenaesbeennens 299

Xii

28.2 Configuring CARPooiiiiiiiteeee ettt sttt et 300

28.3 Enabling CARP SUPPOTTL......coouiriiiiienieiiteitesteste ettt ettt sttt saaeebees 301

28.4 CARP EXAMPIE ..cnvviiiiiiiiiiieeieciteteete ettt ettt sttt ettt et ebeas 302

28.5 Advanced CARP configurationcceeceeveeerieriiiiieenienie ettt 302

28.6 Forcing Failover Of the MaSercouiriiiriiinienieeieeteste ettt 303

29 NEIWOTK SEIVICES ...c.veeurenriiieiiietietenitetente ettt sttt sttt sesaeesesteeseenesaeessesueessesseeanesnesaeennesaeennens 305
29.1 The Network File System (INFS)cccoooiiiiiiiiieniiieceeste ettt 305
29.1.1 NFES Setup eXamPplec..ccceeuirieiiiiiiieieeieieeeetesee ettt e 305

29.1.2 Setting up NFS automounting for /net with amd(8)...........cccccceviriinininnin. 306

29.1.2.1 INtrOQUCHION ..ottt ettt sttt s 307

29.1.2.2 ACTUAL SEIUP ..ottt 307

29.2 The Network Time Protocol (NTP)........cociiiiiiiiniiiiiiiieeeeetceeeeeeee e 308

V. Virtualization and emulation 310
30 Using virtualization: QEMU and NVMMccccoiiiiiiiiiiiiiieiieieiteeee et 311
30.1. Enabling the NetBSD Virtual Machine MONItorcceoeriereneriienenienicecene e 311

30.2. Using QEMU With NVMMcccoiiiiiiiiiiiiiniieniciceeieese sttt 312
30.2.1. Starting QEMU with acCeleration...........cccceveeveererienieneenienenieneneeeseeeene 312

30.2.2. Creating a virtual diSK.........coceeveiiiiiininiiiieeeeeeee e 313

30.2.3. Adding entropy t0 the GUESt.......ccceevieriirieriiriiienierteeeeeee e 313

30.2.4. USING NEEWOTKINGvevveiuiiriiriieieniieitetiettete ettt 313

30.2.5. USING QUAIOentiiieiiiieeiterieeitetesieet ettt sttt s 314

30.2.6. Using graphics (Or N0 ZraphiCs)........ceceeeeruererrienenienieneeieneeceneneeeenieeeeene 314

30.3. Configuring bridged networking on a NetBSD hostccocceevieniiniienneeniienieeieeee, 314

30.4. Notes on using NetBSD aS @ GUESE.......cccuivriirrieriiiieeeenie ettt 315
30.4.1. Unclean VM shutdown, data recovery, and fScK.........cceccervvverieniieniinneeneenne. 315

30.4.2. NetBSD VM 1acking IPVO........ccccuerieriiiiienieeieciteeete ettt 315

30.4.3. Smooth audio playback and latency in VIMScccceevievciiriinnieneenieeieeeeee 316

30.4.4. Changing the console resolution in an X86 VM.......c..ccecevviirnienieniennieeneenne 316

31 LiNUX €MUIATION «..cuveeiiiiiiieiiieeteieet ettt ettt ettt sbe e e sae st e ne st e b eaeenee 317
31.1 EMUIAION SELUP ..eevvtieiieiiieniteeieeie ettt sttt ettt ettt stt e sttt et esateebeebeesabesasesabeas 317
31.1.1 Configuring the Kernelcocceoiiiriiiiiiiiienieeieeeeteee et 317

31.1.2 Installing the Linux Hbraries..........ccccceievieninieneninieiineeeeeceeeeeeeseeeenne 317

31.1.3 Running LinUX ProOgramscccccceecuerrieierierienienienrereneeeeneeeeesreseeesnessesnnenns 318

31.2 DIFECLOTY SLIUCLULEc.veueeniiiienieiieitete et et et et sttt e e eee et eaesaeesnebe e e enesaeennesaeennens 318

31.3 Using Linux browser pIUgINScccccceeveeriirieriininiieniieeie e s 319

31.4 Further readingccooiiieiiiiieieiieeeee et s e 320
BIbLIOGIAPRY ..ottt 320

VI. Building the system 321
32 ObLAINING the SOUICESeeueeteiieieitieiieieeiterte sttt ettt ettt et e see et e besb e et e sbeesteseesatenbesbeeneenbeeneenes 322
32.1 Preparing dir@CtOTICS.c.uerueruteriertieientieitenteeitet et eet et et e et eaeetesbeestesbeeseentesaeenaesbeennens 322

32.2 TErMINOLOZY ...eeuvetieuieiieiieie ettt ettt b et a et e ae e tesbe et esbe e st entesaeeaesbeennns 322

32.3 Downloading tarballs...........coceereiiiiiiiniiieeee e 322
32.3.1 Downloading sources for a NetBSD release..........cocueveveeveeneneencneenieneneenn 323

32.3.2 Downloading sources for a NetBSD stable branch..........cccccocoveniniininnnenn 323

32.3.3 Downloading sources for a NetBSD-current development branch.................. 324

32,4 Fetching by CVS .o s 324
32.4.1 Fetching a NetBSD 1eleasec..coceeveriirieniiniiienienicicneetenieeeene e 325

Xiii

32.4.2 Fetching a NetBSD stable branch..........cocceevieviiiiiienienieiiieienceciceeeeee 325

32.4.3 Fetching the NetBSD-current development branch............cccooceevieriviniennnnne. 326

32.4.4 Saving SOme CVS(1) OPLIONS ...eeuvieriierieriieitieniterte et ettt sttt e siee e 326

33 Crosscompiling NetBSD With build. Sh eeiiciinieniiiiiieieniesieeieete sttt 327
33.1 Building the tOOIChAINc..ceviiiiiiiiiieeieetetee ettt s 327

33.2 Configuring the kernel manuallycccocoovievirieiiinieiininceenecreeeeere e 329

33.3 Building the kernel manuallycc.cccoociriiiiiiiniiiiiec e 330

33.4 Building the kernel with build. Sh..cicciiiiiiiiiieiece e 330

33.5 Building the userland............ccocoiiiiiiiiiiiiieeece e e 331

33.6 Building the X Window SyStemcccecuiviiiiiiiiiieiiiieicee et 332

33.7 Changing build behaviour ..o 332
33.7.1 Changing the Destination Dir€Ctoryccoceevererierenierieneeese e 332

33.7.2 Static BUIlAScouevvirieiiieieiienecetetee ettt 332

33.7.3 USINg build. Sh OPHOMS ..eouieuieieitieiietietieteeteete st eeteie et ee e esteseeseeeeesbeeaee e 333

33.7.4 make(1) variables used during build...........ccocoeveninieniiniiniieeee 335

34 Compiling the Kernel..........cooiiiiiiiiiiii ettt e 341
34.1 Requirements and ProCEAUIEccueruieieririerientieienteeitenteeatete st ete st eiee st saeeneesbeenaens 341

34.2 Installing the Kernel SOUICEScc.eeuiriiriiririeieniieienieetenee ettt 341

34.3 Creating the kernel configuration fileccooeiiiiiiniiiiniiiniceeccee e 342

34.4 Building the kernel manuallyccccoceeiiiniiiiniiiiii e e 343
34.4.1 Configuring the kernel manuallyccocorerveniniininiiniininenceeeeeen 343

34.4.2 Generating dependencies and recompiling manuallyccccecererienencnnene. 344

34.5 Building the kernel using build. Sh cocecceirienenieiienieienieeceie ettt 344

34.6 Installing the New KeInel..........coooiiiiiiriiininiiietc et 345

34.7 If SOMEthING WENE WIONIZ.....eeeuvieiierireniierieeteesresteeteesieesstesseesseesseessessesseesssesssessses 345

35 Updating an exiSting SYStem fTOM SOUICES.eevuieruierierieeriieniiesieesieestesreesteesaeesreenseesseessnenns 347
35.1 Manual build and update proCedureocceevieriirrieenienieeieereeree et 347
35.1.1 Building a new userland...........ccocverieriieniienienie et 347

35.1.2 Building @ new KeINelcccueiviieiiiiiiiiiieiiesteeie ettt 347

35.1.3 Installing the kernel and userlandccccevieriiriiienieniieniieeeee e 348

35.1.4 Updating the system configuration files..........ccecuerveerienieeriiiinieniienieeeeeee 348

35.1.5 SUMMATY ..eoutiiiieiieiieeeerite ettt sttt ettt sat e st e sbtesaee st ebeesbeesateenbeeseesaee 348

35.2 USING SYSIMST.teutieiieeieeieesiteete et esttesiteste e bt esitesute et eebtesbtessbeebeesbeesateenbeebeesasesasesaseas 349

35.3 Using sysbuild and SySUPZTrade..........c..coceeuireerieriieieniieieniieeeieseeresreeeeee e saeeanens 349
35.3.1 Tweak: Building as NON-TOOL.......c..ccceeuieieriirieienienieieneeeesee e e 350

35.3.2 Tweak: Setting up nightly buildscccooiriiiininiiiineeee, 351

35.4 More details about the updating of configuration and startup filesccccccceoeeein. 351
35.4.1 Using etcupdate with source filescccocooieveniniiiininiinicececeeeee 351

35.4.2 Using etcupdate with binary distribution Sets............cccceceeeeniiiieniniecieneneenn. 351

35.4.3 Using et cmanage instead of et cupdate ..oceveveeieneeieiene e 352

36 Building NetBSD installation Media..........ccevueerieririerinieeseeeieeeee st 353
36.1 Creating standard installation images with build.sh...........coccooiiiiiiiiniiniiee s 353

36.2 Creating custom 1ive disK imMagescecueririeririeieniieere et 353

A. Information 355
A.1 Where to get thiS dOCUMENL......c..oiiiiiriiieierieeere ettt sttt s sbeeaaens 355
A2 GUIAE NISTOTY .ttt ettt ettt st e bt s bt et b e bt et sbeeaesbeennens 355

Xiv

B. Contributing to the NetBSD guide

356

B.1 Sending CONITDULIONS ...cc.veeruiiiiiiiieiierte ettt ettt s e st s e e sbeesatesateebeesaaesaneens 356

B.2 XML/DOCBOOK tEMPIALEeeruvieiiieiieniiiiieeieeite sttt ettt ettt st sttt et e st sateebeesaeesaeeens 356

C. Getting started with XML/DocBook 359
C.1 What is XML/DOCBOOKc.coiiiiiiiniiiniiiiieteite ettt ettt st e sbt e st st e beesaaesaneea 359

C.2 Installing the NeCESSATY TOOIS.......c..ciiiiiiiiiiiirieiert ettt s 359
C.3USING the TOOIS ...ttt s e 360

G LINKS ottt sttt sttt e a et b et enes 361

D. Acknowledgements 362
D.1 Original acknoWledZEemMEntscocueiuirieiieiieiert ettt sttt aesbeeneens 362

D.2 Current acknOWIEAZEMENLESccueiiiriiriieiieiieie sttt ettt ettt sttt e et saeeaesbeeneens 362

.3 LACRIMSES ..ttt ettt ettt st b et e bt e h et e he et bt e et b e e a et e be et sbe e st e b e ebee bt eaeenaen 363
D.3.1 Federico Lupi’s original license of this gUideccocevervienenieninieieniicene e 363

D.3.2 Networks Associates Technology’s license on the PAM article.........ccccocevveenencnne. 363

D.3.3 Joel Knight’s license on the CARP article........cccooeveerineiiinenieiinieiencncene e 364

E. Bibliography 365
BiDIIOZIAPNY ...ttt ettt st ettt st et e bt et e st e et e e baesateente e beenaaenaneen 365

XV

List of Tables

18-1. PAM chain eXECULION SUMIMALYccvverutetenteriretinteetenteetentesttentesseestessesstessesseessensesssensesseensessesuens 174
20-1. Veriexec fINZEIPrints tOOIScouerieriirieriirtieienie ettt ettt ettt ettt st et sbe e beeaeenee 216
20-2. VerieXeC aCCESS LYPE ALIASES ..veverureiiriietintieiienie ettt ettt ettt sttt sbe st et e e bt eatenaesbee b e beeseenee 217

xVi

Purpose of this guide

This guide describes the installation and the configuration of the NetBSD operating system as well as the
setup and administration of some of its subsystems. It primarily addresses people coming from other
Unix-like operating systems, and aims to be a useful guide in the face of the many small problems one
encounters when using a new tool.

This guide is not a Unix tutorial: basic knowledge of some concepts and tools is assumed. You should
know, for example, what a file and a directory are, and how to use an editor. There are plenty of books
explaining basic Unix and operating system concepts, and you should consult one if you need more
background information. It is better to choose a general book and avoid titles like “Learning Unix-XYZ,
version 1.2.3.4 in 10 days”, but this is a matter of personal taste.

Much work is still required to finish this introduction to NetBSD: some chapters are not finished (some
are not even started) and some subjects need more testing. Corrections and additions are most certainly
welcome.

This guide is currently maintained by the NetBSD www team (<www@NetBSD.org>). Corrections and
suggestions should be sent to that address. See also Appendix B.

xvii

. About NetBSD

Chapter 1
What is NetBSD?

NetBSD is a free, fast, secure, and highly portable Unix-like Open Source operating system. It is
available for many platforms, from 64-bit x86 servers and PC desktop systems to embedded ARM- and
MIPS- based devices. Its clean design and advanced features make it excellent in both production and
research environments, and it is user-supported with complete source. Many applications are easily
available through pkgsrc, the NetBSD Packages Collection.

1.1 The story of NetBSD

The first version of NetBSD (0.8) dates back to 1993 and springs from the 4.3BSD Lite operating
system, a version of Unix developed at the University of California, Berkeley (BSD = Berkeley Software
Distribution), and from the 386BSD system, the first BSD port to the Intel 386 CPU. In the following
years, modifications from the 4.4BSD Lite release (the last release from the Berkeley group) were
integrated into the system. The BSD branch of Unix has had a great importance and influence on the
history of Unix-like operating systems, to which it has contributed many tools, ideas and improvements
which are now standard: the vi editor, the C shell, job control, the Berkeley Fast File System, reliable
signals, support for virtual memory and TCP/IP, just to name a few. This tradition of research and
development survives today in the BSD systems and, in particular, in NetBSD.

1.2 NetBSD features

NetBSD operates on a vast range of hardware platforms and is very portable. The full source to the
NetBSD kernel and userland is available for all the supported platforms; please see the details on the
official site of the NetBSD Project (http://www.NetBSD.org/).

The basic features of NetBSD are:

+ Code quality and correctness

« Portability to a wide range of hardware
 Secure defaults

« Adherence to industry standards

» Research and innovation

These characteristics also bring indirect advantages. For example, if you work on just one platform you
could think that you’re not interested in portability. But portability is tied to code quality; without a
well-written and well-organized code base it would be impossible to support a large number of
platforms. And code quality is the base of any good and solid software system, though surprisingly few
people seem to understand it.

Chapter 1 What is NetBSD?

One of the key characteristics of NetBSD is that its developers are not satisfied with partial
implementations. Some systems seem to have the philosophy of “If it works, it’s right”. In that light,
NetBSD’s philosophy could be described as “It doesn’t work unless it’s right”. Think about how many
overgrown programs are collapsing under their own weight and “features” and you’ll understand why
NetBSD tries to avoid this situation at all costs.

1.3 Supported platforms

NetBSD supports many platforms, including the popular 1386 and amd64, ARM, SPARC, Alpha, Amiga,
Atari, and m68k- and PowerPC-based Apple Macintosh machines. Technical details for all of them can
be found on the NetBSD site (http://www.NetBSD.org/ports/).

1.4 NetBSD'’s target users

The NetBSD site states that: “The NetBSD Project provides a freely available and redistributable system
that professionals, hobbyists, and researchers can use in whatever manner they wish”. It is also an ideal
system if you want to learn Unix, mainly because of its adherence to standards (one of the project goals)
and because it works equally well on the latest PC hardware as well as on hardware which is considered
obsolete by many other operating systems. To learn and use Unix you don’t need to buy expensive
hardware; you can use that old PC or Mac in your attic. It is important to note that although NetBSD runs
on old hardware, modern hardware is well supported and care has been taken to ensure that supporting
old machines does not inhibit performance on modern hardware. In addition, if you need a Unix system
which runs consistently on a variety of platforms, NetBSD is probably your best choice.

1.5 Applications for NetBSD

Aside from the standard Unix productivity tools, editors, formatters, C/C++ compilers and debuggers,
and so on, that are included with the base system, there is a huge collection of packages (currently over
20,000) that can be installed as binary packages or built from pkgsrc, including popular cross-platform
software such as Firefox, PostgreSQL, Python, and Xfce.

1.6 How to get NetBSD

NetBSD is an Open Source operating system, and as such it is freely available for download from
cdn.NetBSD.org (http://cdn.NetBSD.org) and other mirrors (http://www.NetBSD.org/mirrors/).

Il. System installation and related
issues

Chapter 2
Installing NetBSD: Preliminary
considerations and preparations

2.1 Preliminary considerations

2.1.1 Dual booting
It is possible to install NetBSD together with other operating systems on one hard disk.

If there is already an operating system on the hard disk, think about how you can free some space for
NetBSD:; if NetBSD will share the disk with other operating systems you will probably need to create a
new partition (which you will do with sysinst). Oftentimes this will not be possible unless you resize an
existing partition.

Unfortunately, it is not possible to resize an existing partition with sysinst, but there are some commercial
products (like Partition Magic) and some free tools (GNU Parted, FIPS, pfdisk) available for this.

You can also install NetBSD on a separate hard disk.

Advice: Unless you are comfortable with setting up a partitioning scheme for two or more operating
systems, and unless you understand the risk of data loss if you should make a mistake, it is
recommended that you give NetBSD its own hard disk. This removes the risk of damage to the
existing operating system.

2.1.2 NetBSD on emulation and virtualization

It is possible to install and run NetBSD on top of other operating systems without having to worry about
partitioning. Emulators or virtualization environments provide a quick and secure way to try out NetBSD.
The host operating system remains unchanged, and the risk of damaging important data is minimized.

Information about NetBSD as a Xen host and guest system is available on the NetBSD/xen web page
(http://www.NetBSD.org/ports/xen/).

The NetBSD on emulated hardware (http://www.NetBSD.org/ports/emulators.html) web page provides
detailed information about various emulators and the supported NetBSD platforms. It should also be
noted that NetBSD runs as a VMware guest.

Chapter 2 Installing NetBSD: Preliminary considerations and preparations

2.2 Install preparations

2.2.1 The INSTALL document

The first thing to do before installing NetBSD is to read the release information and installation notes in
one of the INSTALL files: this is the official description of the installation procedure, with
platform-specific information and important details. It is available in HTML, PostScript, plain text, and
an enhanced text format to be used with more. These files can be found in the root directory of the
NetBSD release (on the install CD or on the FTP server). For example, the amd64 install instructions are
available at ftp.NetBSD.org/pub/NetBSD/NetBSD-9.3/amd64/INSTALL.html
(//ftp.NetBSD.org/pub/NetBSD/NetBSD-9.3/amd64/INSTALL.html)

2.2.2 Partitions

The terminology used by NetBSD for partitioning is different from the typical DOS/Windows
terminology; in fact, there are two partitioning schemes involved when running NetBSD on a typical PC.
NetBSD installs in one of the four primary BIOS partitions (the partitions defined in the hard disk
partition table).

Within a BIOS partition (also called slice) NetBSD defines its BSD partitions using a disklabel. These
partitions can be seen only by NetBSD and are identified by lowercase letters (starting with “a”). For
example, wdOa refers to the “a” partition of the first IDE disk (wd0) and sdOa refers to the “a” partition
of the first SCSI disk. In Figure 2-1 there are two primary BIOS partitions, one used by DOS and the
other by NetBSD. NetBSD describes the disk layout through the disklabel.

Figure 2-1. Partitions

BIOS partitions

(MBR) Disklabel

[}

0

i

a

e /usr @
1 — NetBSD a %
m -
Y v o]
b swap = °
e 3
a / © £
o

0 - DOS

Note: The meaning of partitions “c” and “d” is typical of the amdé4 port. On most other ports, “c”
represents the whole disk.

Chapter 2 Installing NetBSD: Preliminary considerations and preparations

Note: If NetBSD shares the hard disk with another operating system (like in the previous example)
you will want to install a boot manager, i.e., a program which lets you choose which OS to start at
boot time. sysinst can do this for you and will ask if you want to install one. Unless you have specific
reasons not to, you should let sysinst perform this step.

2.2.3 Hard disk space requirements

The exact amount of space required for a given NetBSD installation varies depending on the platform
being used and which distribution sets are selected. Generally speaking, if you have a few GB of free
space on your hard drive, you will have enough space for a full installation of the base system.

2.2.4 Network settings
If you plan to fetch distribution sets over the network (not necessary if you downloaded a full-size install

ISO) and do not use DHCP, write down your basic network settings. You will need:

» Your IP address (example: 192.168.1.7)
the netmask (example: 255.255.255.0)

« the IP address of your default gateway (example: 192.168.1.1)
« the IP address of the DNS server you use (example: 145.253.2.75)

2.2.5 Backup your data and operating systems!

Before you begin the installation, make sure that you have a reliable backup of any operating systems
and data on the used hard disk. Mistakes in partitioning your hard disk can lead to data loss. Existing
operating systems may become unbootable. "Reliable backup" means that the backup and restore
procedure is tested and works flawlessly!

2.2.6 Preparing the installation media

The NetBSD installation system consists of two parts. The first part is the installation kernel. This kernel
contains the NetBSD install program sysinst and it is booted from the install media (e.g, CD/DVD, USB
drive, memory card, etc.). The sysinst program will prepare the disk: it separates the disk space into
partitions, makes the disk bootable and creates the necessary file systems.

The second part of the install system is made up of the binary distribution sets: the files of the NetBSD
operating system. The installer needs to have access to the distribution sets. sysinst will usually fetch
these files from the install media you booted from, but it can also fetch them via FTP, NFS, or a local
filesystem.

The NetBSD Project provides complete install media
(https://cdn.NetBSD.org/pub/NetBSD/NetBSD-9.3/images/) for every supported hardware architecture.
This is usually in the form of bootable CD images (. iso files).

Chapter 2 Installing NetBSD: Preliminary considerations and preparations

2.2.6.1 Booting the install system from USB

To use a bootable USB install image (on amd64, i386), download the img. gz file for your hardware
architecture, decompress and copy the image to a USB. For example on a Unix-like system you may use:

gunzip NetBSD-9.3-amd64-install.img.gz
dd if=NetBSD-9.3-amd64-install.img of=/dev/your-usb bs=2m

Examples of your-usb are /dev/rsd0d (NetBSD), /dev/sda (Linux).

Caution

Selecting the wrong device in dd may destroy your current system. Double-check it
isn’t mounted and is your USB stick. It should appear at the bottom of dmesg on
connect, for example, if you see:

sd0 at scsibus0O target 0 lun 0: [...], disk removable

on NetBSD, you will want to select /dev/rsdod.

2.2.6.2 Booting the install system from CD

To use a bootable NetBSD install CD, download the iso file for your hardware architecture and burn it to
a CD or DVD. You will need to handle this step alone, as burning programs vary widely. Ensure that your
computer is set up to boot from CD-ROM before hard drives, insert the disc, and reboot the computer.

2.3 Checklist

This is the checklist about the things that should be clear and on-hand now:

+ Available disk space
» Bootable medium with the install system
« CD/DVD or server with the distribution sets

+ Your network information (only if you will be fetching distribution sets via the network and do not use
DHCP)

« A working backup
» A copy of the INSTALL document

Chapter 3
Example installation

3.1 Introduction

This chapter will guide you through the installation process. The concepts presented here apply to all
installation methods. The only difference is in the way the distribution sets are fetched by the installer.
Some details of the installation differ depending on the NetBSD release. The examples from this chapter
were created with NetBSD 8.0.

Note: The following install screens are just examples. Do not simply copy them, as your hardware
and configuration details may be different!

3.2 The installation process

The installation process is divided logically into two parts. In the first part, you create a partition for
NetBSD and write the disklabel for that partition. In the second part, you decide which distribution sets
(subsets of the operating system) you want to install and then extract the files into the newly created
partition(s).

3.3 Keyboard layout

The NetBSD install program sysinst allows you to change the keyboard layout during the installation. If
for some reason this does not work for you, you can use the map in the following table.

uUs IT DE FR
- ’ B)
/ - - !
= i ’ -
¢ ¢} M

; 0 0 m
£ § 3
" o A %
* ((8
()) 9
) = = 0

Chapter 3 Example installation

us IT DE FR
’ a u
‘ \ @
\ u # ‘

3.4 Starting the installation

To start the installation of NetBSD, insert your chosen boot medium (CD/DVD, USB drive, floppy, etc.)
and reboot the computer. The kernel on the installation medium will be booted and it will start displaying
a lot of messages on the screen about hardware being detected.

Figure 3-1. Selecting the language

NetBSD-ramdb64 8.0

Thiz menu-driven tool is designed to help you install HNetBSD to a hard disk,
or upgrade an existing NetB3D system, with a minimum of work.

In the following menus type the reference letter (a, b, c, ...) to select an
item, or type CTRL+N-CTRL+F to s=elect the next- previous item.

The arrow keys and Page-up-Page-down may also work.

fictivate the current selection from the menu by typing the enter key.

a: Installation messages in English

b: Installation auf Deutsch

c: Mensajes de instalacion en castellano

d: Messages 4’ installation en frangais

e: Komunikaty instalacyjne w jezyku polskim

When the kernel has booted, you will find yourself in the NetBSD installation program, sysinst, shown in
Figure 3-1. From here on, you should follow the instructions displayed on the screen, using the INSTALL
document as a companion reference. You will find the INSTALL document in various formats in the root
directory of the NetBSD release. The sysinst screens all have more or less the same layout: the upper part
of the screen shows a short description of the current operation or a short help message, and the rest of
the screen is made up of interactive menus and prompts. To make a choice, use the cursor keys, the
“Ctrl+N” (next) and “Ctrl+P” (previous) keys, or press one of the letters displayed left of each choice.
Confirm your choice by pressing the Return (also known as “Enter”) key.

Start by selecting the language you prefer to use for the installation process.

The next screen Figure 3-2 will allow you to select a suitable keyboard type.

Chapter 3 Example installation

Figure 3-2. Selecting a keyboard type

NetBSD-amdb4 §.0

This menu-driven tool is designed to help you install NetBSD to a hard disk,
or upgrade an existing NetBSD system, with a minimum of work.

In the following menus type the reference letter (a, b, c, ...) to select an
item, or type CTRL+N-CTRL+P to select the next-/previous item.

The arrow keys and Page-up-Page-down may also work.

Activate the current selection from the menu by typing the enter key.

Keyboard tuype

US-English
UK-English
Belgian
Czech
Danish
Dutch
Finnish
French
German
Greek

page up, >: page douwn

=Ry =T v B -

Nl ST

This will bring you to the main menu of the installation program (Figure 3-3).

Figure 3-3. The sysinst main menu

NetBSD-ramdb64 8.0

Thiz menu-driven tool is designed to help you install HNetBSD to a hard disk,
or upgrade an existing NetB3D system, with a minimum of work.

In the following menus type the reference letter (a, b, c, ...) to select an
item, or type CTRL+N-CTRL+F to s=elect the next- previous item.

The arrow keys and Page-up-Page-down may also work.

fictivate the current selection from the menu by typing the enter key.

Thank you for using NetBSD?

NetBSD-8.0 Install System

: Install NetB3D to hard disk

Upgrade NetBSD on a hard disk

Re-install sets or install additiomnal sets
Reboot the computer

Utility menu

Config menu

Exit Install System

Choosing the “Install NetBSD to hard disk” option brings you to the next screen (Figure 3-4), where you
need to confirm that you want to continue the installation.

Chapter 3 Example installation

Figure 3-4. Confirming to install NetBSD

You have chosen to install NetBSD on your hard disk. This will change
information on your hard disk. You should have made a full backup before
this procedure?! This procedure will do the following things:

a) Partition your disk

b) Create new BSD file systems

c) Load and install distribution sets

d) Some initial system configuration

(After you enter the partition information but before your disk is changed,
you will have the opportunity to gquit this procedure.)

Shall we continue?
yes or no?

a: No

After choosing “Yes” to continue, sysinst displays a list of one or more disks and asks which one you
want to install NetBSD on. In the example of Figure 3-5, two disks are listed, and NetBSD will be
installed on “wd0”, the first SATA or IDE disk found. If you use SCSI or external USB disks, the first
one will be named “sd0”, the second one “sd1” and so on.

Figure 3-5. Choosing a hard disk

On which disk do you want to install MetBSD?

Available disks

D wd@ (40G, UBOX HARDDISK)

wdl (200G, UB0DX HARDDISK)
Extended partitioning
Exit

Chapter 3 Example installation

Then the installer will ask you to confirm the detected disk geometry from the information provided by
the BIOS, as shown in Figure 3-6. It almost always gives the right values. Choose “This is the correct
geometry”, unless you know that the information provided by your BIOS is reportedly incorrect.

Figure 3-6. Disk geometry

This disk matches the following BIOS disk:
BIOS # cylinders heads sectors total sectors GB
83886080 42

Note: since sysinst was able to uniquely match the disk you chose with a disk
known to the BIODS, the values displayed above are wvery likely correct, and
should not be changed (the walues for cylinders, heads and sectors are
probably 1023, 255 and 63 - this is correct).

You should only change the geometry if you know the BIOS reports incorrect
values.

Thiz is the correct geometry
b: Set the geometry by hand

3.5 MBR partitions

The first important step of the installation has come: the partitioning of the hard disk. First, you need to
specify whether NetBSD will use a partition (suggested choice) or the whole disk. In the former case it is
still possible to create a partition that uses the whole hard disk (Figure 3-7), so we recommend that you
select this option as it keeps the BIOS partition table in a format which is compatible with other
operating systems.

10

Chapter 3 Example installation

Figure 3-7. Choosing the partitioning scheme

We are now going to install NetBSD on the disk wdO.

NetBSD requires a single partition in the disk’s MBR partition table, this is
split further by the MetB3D disklabel. HNetB5D can also access file systems
in other MBR partitions.

If you select 'Use the entire disk’ then the previous contents of the disk
will be overwritten and a single MBR partition used to cover the entire disk.
If you want to install more than one operating system then edit the MBR
partition table and create a partition for NetBSD.

A few hundred MB is enough for a basic installation, but you should allow
extra for additional software and user files.
Allow at least 5GB if you want to build NetBSD itself.

Which would you like to do?

a: Edit the MBR partition table

b: Use the entire disk

The next screen shows the current state of the MBR partition table on the hard disk before the installation
of NetBSD. There are four primary partitions, and as you can see, this example disk is currently empty.
If you do have other partitions you can leave them around and install NetBSD on a partition that is
currently unused, or you can overwrite a partition to use it for NetBSD.

Figure 3-8. fdisk

The Current MBR partition table is shown below.
Flgs: a =» fActive partition, d => bootselect default, I => Install here.
Select the partition you wish to change:

Total disk size 40960 MB.

Start(MB) Size(MB) Flg Kind Bootmenu

7
unused
unused

Change input units (sectors-cylinders~-MB)

b

=

d: unused
e

x: Partition tahle OR

11

Chapter 3 Example installation

Deleting a partition is simple: after selecting the partition, a menu with options for that partition will
appear (Figure 3-9). Change the partition kind to “Delete partition” to remove the partition. Of course, if
you want to use the partition for NetBSD you can set the partition kind to “NetBSD”.

You can create a partition for NetBSD by selecting the partition you want to install NetBSD to. The

[7Pe1]

partition names “a” to “d” correspond to the four primary partitions on other operating systems. After
selecting a partition, a menu with options for that partition will appear, as shown in Figure 3-9.

Figure 3-9. Partition options

The Current MBR partition table is shown below.
Flgs: a => Active partition, d => bootselect default, I => Install here.
Select the partition you wish to change:

Total disk size 40960 MB.

Start(MB) i type: unused
3 start: O MB
size: O MB
end: O MB
active: No

Change in| a: Don't change

Partition| b: Delete partition
linders~MB)

Extended partition, LBA

FreeBSD-386BSD

OpenB5D

Linux native

Linux swap

DOS FAT1Z

DOS FAT16, <32ZM

page up, >: page down

ol =Ty -1

N

To create a new partition, the following information must be supplied:

« the type (kind) of the new partition
« the first (start) sector of the new partition
« the size of the new partition

Choose the partition type “NetBSD” for the new partition (using the “type” option). The installation
program will try to guess the “start” position based on the end of the preceding partition. Change this
value if necessary. The same thing applies to the “size” option; the installation program will try to fill in
the space that is available until the next partition or the end of the disk (depending on which comes first).
You can change this value if it is incorrect, or if you do not want NetBSD to use all the suggested amount
of space.

After you have chosen the partition type, start position, and size, it is a good idea to set the name that
should be used in the boot menu. You can do this by selecting the “bootmenu” option and providing a
label, e.g., “NetBSD”. Repeat this step for other bootable partitions, so you can boot both NetBSD and a
Windows system (or other operating systems) using the NetBSD bootselector. You can also choose one
of the labelled partitions as default for the boot menu. If you are satisfied with the partition options,

12

Chapter 3 Example installation

confirm your choice by selecting “Partition OK”. Choose “Partition table OK” to leave the MBR
partition table editor.

If you have made an error in partitioning (for example you have created overlapping partitions) sysinst
will display a message and suggest to go back to the MBR partition editor (but you are also allowed to
continue). If the data is correct but the NetBSD partition lies outside the range of sectors which is
bootable by the BIOS, sysinst will warn you and ask if you want to proceed anyway. Doing so may lead
to problems on older PCs.

Note: This is not a limitation of NetBSD. Some old BIOSes cannot boot a partition which lies outside
the first 1024 cylinders. To fully understand the problem, you should study the different types of
BIOSes and the many addressing schemes that they use (physical CHS, logical CHS, LBA, ...).
These topics are not described in this guide.

On modern computers (those with support for int13 extensions), it is possible to install NetBSD in
partitions that live outside the first 8 GB of the hard disk, provided that the NetBSD boot selector is
installed.

Next, sysinst will offer to install a boot selector on the hard disk. This screen is shown in Figure 3-10.

Figure 3-10. Installing the boot selector

Your configuration regquires the NetB5D bootselect code to select which
operating system to use.

It is not currently installed, do you want to install it now?

yes or no?

b: No

At this point, the BIOS partitions (called slices on BSD systems) have been created. They are also called
PC BIOS partitions, MBR partitions or fdisk partitions.

Note: Do not confuse the slices or BIOS partitions with the BSD partitions, which are different things.

13

Chapter 3 Example installation

3.6 Disklabel partitions

Some platforms, like PC systems (amd64 and i1386), use DOS-style MBR partitions to separate file
systems. The MBR partition you created earlier in the installation process is necessary to make sure that
other operating systems do not overwrite the diskspace that you allocated to NetBSD.

NetBSD uses its own partition scheme, called a disklabel, which is stored at the start of the MBR
partition: for more information, refer to Section 2.2.2. In the next few steps you will create a disklabel(5)
and set the sizes of the NetBSD partitions, or use existing partition sizes, as shown in Figure 3-11.

Figure 3-11. Edit partitions?

NetB5D uses a BSD disklabel to carve up the NetB5D portion of the disk into
multiple BSD partitions. You must now set up your BSD disklabel.

You can use a simple editor to set the sizes of the NetBSD partitions, or
keep the existing partition sizes and contents.

You will then be given the opportunity to change any of the disklabel fields.

The NetB5D part of your disk iz 40959 Megabytes. A full installation
requires at least 31 Megabytes without X and at least 81 Megabytes if the X
sets are included.

Choose your installation

a: 3et zsizes of NetBSD partitions

b: Use existing partition sizes

When you choose to set the sizes of the NetBSD partitions you can define the partitions you would like
to create. The installation program will generate a disklabel based on these settings. This installation
screen is shown in Figure 3-12.

14

Chapter 3 Example installation

Figure 3-12. Setting partition sizes

You can now change the sizes for the system partitions. The default iz to
allocate all the space to the root file system. However, you may wish to
have separate ~usr (additional system files), rvar (log files etc) or ~home
(users’ home directories) file systems.

I}

Free space will be added to the partition marked with a “+

MB Cylinders Sectors Filesystem
a: 4129 (38911) 8390 8457120 + ~
Nb: 2048 4162 4195296 swap)
2 ¢] ¢] stmp (tmpfs)

0 0 AUsr
0 0 suar
0 0 ~home

Add a user defined partition

c
d:
e:
f.
q
h: Change input units (sectors-cylinders~-MB)

i
h
x: Accept partition sizes. Free space 34782 MB, 12 free partitions.

Size for swap in MB? [Z20481: 4096

As specified in Figure 3-3, the items of the installation menus can be selected pressing the letter
displayed left of them. Be careful that, in these menus, they do not always correspond to the BSD
disklabel partition letters. For example, third line (letter “c’’) of Figure 3-12 does not refer to the whole
NetBSD partition, as well as the fourth line (letter “d”’) does not correspond to BSD disklabel partition
“d”.

The default partition scheme of just using a big / (root) file system (plus swap) works fine with NetBSD,
and there is little need to change this. Figure 3-12 shows how to change the size of the swap partition to
4096 MB. Note also that partition / is marked with a “+”, so it will occupy all the remaining free space
(not located for any other partition). Changing /tmp to reside on a RAM disk (mount_tmpfs(8) or mfs(8))
for extra speed may be a good idea. Other partition schemes may use separate partitions for /var, /usr
and/or /home, but you should use your own experience to decide if you need this. When you completed
the definition of all the desired partitions, choose “Accept partition sizes”.

The next step is to create the disklabel and edit its partitions, if necessary, using the disklabel editor
(Figure 3-13). If you predefined the partition sizes in the previous step, the resulting disklabel will
probably fit your wishes. In that case you can complete the process immediately by selecting “Partition
sizes ok”.

15

Chapter 3 Example installation

Figure 3-13. The disklabel editor

We now have your BSD disklabel partitions as:
This is your last chance to change them.

Start MB End MB 3Size MB FS tuype Newfs Mount Mount point

36862 36863 FF3u2
40959 4096 swap
40959 40959 NetBSD partition
] 40959 40960 Whole disk
: 0 0 0 unused
Show all unused partitions

Change input units (sectors-cylinders-MB)
Partition sizes ok

Letters in Figure 3-13 are used for line selection and to represent the corresponding BSD disklabel
partitions, with the meaning specified in Section 2.2.2. In the amd64 port, there are two reserved
partitions: “c”, representing the NetBSD partition, and “d”, representing the whole disk. You can edit all
the other partitions by using the cursor keys and pressing the Return key, or using their corresponding
letters. You can add a partition by selecting an unused slot and setting parameters for that partition. The
partition editing screen is shown in Figure 3-14. When you are satisfied with all the values, choose

“Partition sizes ok™.

16

Figure 3-14. Disklabel partition editing

The current values for partition "a’ are,
Select the field you wish to change:

kda -

£

b:
[
d:
e:
q:
h:
i:
J:
k:
l:

m:
4

MB cylinders sectors

FStype:
start: Select the type
size:
end: 36863 a: unused
newf s : Yes b: FF5vl
avg file size: 4
block size: 16384 I sSwap
fragment size: 2048 : msdos
mount : Yes : LFS
mount options: : other types
mount point: s : unchanged
Change input units (sector
Restore original walues
Partition sizes ok

3.7 Setting the disk name

Chapter 3 Example installation

After defining the partitions in the new disklabel, the last item is to enter a name for the NetBSD disk as
shown in Figure 3-15. This can be used later to distinguish between disklabels of otherwise identical
disks.

17

Chapter 3 Example installation

Figure 3-15. Naming the NetBSD disk

Please enter a name for your NetB3D disk [UBOX HARDDISK 1: B3Disk

3.8 Last chance!

The installer now has all the data it needs to prepare the disk. Nothing has been written to the disk at this
point but, and now is your last chance to abort the installation process before actually writing data to the
disk. Choose “no” to abort the installation process and return to the main menu, or continue by selecting

113 29

yes”.

18

Chapter 3 Example installation

Figure 3-16. Last chance to abort

Ok, we are now ready to install NetB5D on your hard disk (wd®). HNothing has
been written yet. This is your last chance to quit this process before
anything gets changed.

Shall we continue?

yes or no?

a: No

3.9 The disk preparation process

After confirming that sysinst should prepare the disk, it will run disklabel(8) to create the NetBSD
partition layout and newfs(8) to create the file systems on the disk.

After preparing the NetBSD partitions and their filesystems, the next question (shown in Figure 3-17) is
which bootblocks to install. Usually you will choose the default of BIOS console, i.e., show boot
messages on your computer’s display.

If you run a farm of machines without monitor, it may be more convenient to use a serial console running
on one of the serial ports. The menu also allows changing the serial port’s baud rate from the default of
9600 baud, 8 data bits, no parity and one stopbit.

19

Figure 3-17. Selecting bootblocks

Chapter 3 Example installation

Would you like to install the normal set of bootblocks or serial bootblocks?

Normal bootblocks use the BIOS console device as the console (usually the
monitor and keyboard). Serial bootblocks use the first serial port as the

console.

Selected bootblock: BIOS console

3.10 Installation type

Bootblocks selection

b
c
d
H
f
q
X

Use
Use
Use
Use
Set
Use
Exit

a: Use BIOS console

serial port com®
serial port coml
serial port comZ
serial port com3
serial baud rate
existing bootblocks

The installer will then ask whether you want to do a full, minimal or custom installation. NetBSD is
broken into a collection of distributions sets. “Full installation” is the default and will install all sets;
“Minimal installation” will only install a small core set, the minimum of what is needed for a working
system. If you select “Custom installation” you can select which sets you would like to have installed.

This step is shown in Figure 3-18.

20

Chapter 3 Example installation

Figure 3-18. Full or custom installation

The HetBSD distribution is broken into a collection of distribution sets.
There are some basic sets that are needed by all installations and there are
some other sets that are optional. You may choose to install a core set
(Minimal installation), all of them (Full installation), or a custom group of
sets (Custom installation).

Select your distribution

a: Full installation
b: Installation without X11
c: Minimal installation

Custom installation

Abandon installation

If you choose to do a custom installation, sysinst will allow you to choose which distribution sets to
install, as shown in Figure 3-19. At a minimum, you must select a kernel and the “Base” and
“Configuration files (/etc)” sets.

Figure 3-19. Selecting distribution sets

The following iz the list of distribution sets that will be used.
Selected

Kernel (GENERIC)
Kernel modules

Base

Configuration files (retc)
Compiler tools

Games

Manual pages
Miscellaneous

Test programs

Text processing tools
X11 =ets

Source and debug sets

x: Install selected sets

oS D R0 R

i:
J:
k:
1:

21

Chapter 3 Example installation

3.11 Choosing the installation medium

At this point, you have finished the first and most difficult part of the installation!

The second half of the installation process consists in populating the file systems by extracting the
distribution sets that you selected earlier (“Base”, “Compiler tools”, “Games”, etc.). Now sysinst needs
to find the NetBSD sets and you must tell it where to find them: it can be the same medium where sysinst
resides, or a different one, according to your preferences. The menu offers several choices, as shown in
Figure 3-20. The options are explained in detail in the INSTALL documents.

Figure 3-20. Installation media

Your disk is now ready for installing the kernmel and the distribution sets.
As noted in your INSTALL notes, you have sewveral options. For ftp or nfs,
you must be connected to a network with access to the proper machines.

dets selected 4, processed 0, Next set kern-GENERIC.

Install from

a: CD-ROM ~» DUD - install image media

: HTTP

: FTP

: NF3

: Floppy

! Unmounted fs

: Local directory

: Skip set

: Skip set group

: Abandon installation

b
C
i
e
f
q
h

[

3.11.1 Installing from CD-ROM / DVD / install image media

Choose this option if you want to install NetBSD from either an optic medium (“CD-ROM / DVD”) or
another medium, such as an USB drive. If the running sysinst itself has been loaded from there, the
corresponding device will be automatically selected and the extraction of the distribution sets will begin.

The CD-ROM/DVD or other device name: If sysinst is not able to detect the CD-ROM/DVD or the
USB flash device, you can gather more information about the hardware configuration as follows:

1. Press “Ctrl+Z” to pause sysinst and go to the shell prompt.
2. Type the command:
dmesg

This will show the kernel startup messages, including information about not detected or not
configured devices. When the first CD-ROM or DVD drive in the system is properly working, it is
usually named cd0, regardless of whether it is IDE or SCSI (or even USB or FireWire). The first
USB flash drive is named sd0 when it is correctly configured.

22

Chapter 3 Example installation

3. If the display scrolls too quickly, you can also use more:
dmesg | more

4. As instructed, you can return to the NetBSD installation by typing either “exit” or “*D” (“Ctrl+D”).

3.11.2 Installing from an unmounted file system

Figure 3-21 shows the menu to install NetBSD from an unmounted file system. It is necessary to specify
the device (“Device”), its file system type (“File system”) and a root directory inside it (“Base
directory”). The binary installation sets and the source sets are . tgz files. The default mountpoint is
“mnt” in amd64. The path is formed as follows:

/<default mountpoint>/<Base directory>/<Binary set directory> or <Source set directory>/set.tgz

Choose a combination of “Base directory” and “Binary set directory” (or “Source set directory”) that
generates a valid path in your unmounted filesystem. If more than one consecutive / appear, only the first
/ will actually be considered. You need to specify a “Source set directory” only if you previously chose
to install some sources. Source sets are usually not included in the installation images.

In the following example the install sets are stored on a MSDOS file system, on partition “e” on the
device “sd0”.

Figure 3-21. Mounting a file system

Enter the unmounted local device and directory on that device where the
distribution is located.
Remember, the directory should contain the .tgz files.

a: Device wd O
File system ff=s
Base directory release
Binary set directory samdbd-,binary-sets
Source set directory /sourcerssets
Exit
Continue

Specify the device name and the partition. Figure 3-22 shows how to specify device "sd0" with partition

nn

€

23

Chapter 3 Example installation

Figure 3-22. Mounting a partition

Enter the unmounted local device and directory on that device where the
distribution is located.
Remember, the directory should contain the .tgz files.

% Device —wdo

b: File system ff=s

c: Base directory release

d: Binary set directory samdbd-,binary-sets
e: Source set directory /sourcerssets

f: Exit

x: Continue

device [wd@]: sdOe

In Figure 3-23 the file system type specified is “msdos”. This value is used to form the command
mount_<File system> to mount the volume. Any string (representing a “File system” type) which
forms a valid command is accepted: for example, the NetBSD file system “ffs” or “ext2fs”, a Linux file
system. In this example, the “Base directory” item is left blank and the binary sets are stored under
/sets, so that the path becomes:

/mnt///sets

Ignoring the multiple /, this is equivalent to /mnt /sets and it is a valid one. Choosing “Continue” will
start the extraction of the sets.

24

Chapter 3 Example installation

Figure 3-23. Accessing a MSDOS file system

Enter the unmounted local device and directory on that device where the
distribution is located.
Remember, the directory should contain the .tgz files.

: Device =d0e
: File system msdos
: Base directory

: Binary set directory ssets
: Source set directory

: Exit

: Continue

3.11.3 Installing via FTP and Network configuration

If you choose to install from a local network or the Internet via FTP, sysinst must be instructed to
properly get the distribution sets, as shown in Figure 3-24.

25

Chapter 3 Example installation

Figure 3-24. Defining the FTP settings

The following are the ftp site, directory, user, and password that will be
used. If "user" is "ftp", then the password is not needed.

a: Host ftp.NetB5SD.org
b: Base directory pub-NetB5D-NetB5D-8.0
c: Binary set directory samdbd-,binary-sets

d: Source set directory /sourcerssets

e: User ftp
f

q

]

i

Password
Proxy
Transfer directory susrsINSTALL
Delete after install Ly [i]
j: Configure network
k: Exit
x: Get Distribution

The defaults work most of the time. You also need to configure your network connection, before

I3t

proceeding: go to the corresponding menu item, pressing letter “j”.

NetBSD currently supports installation via ethernet, USB ethernet or wireless, and wireless LAN.
Installation via DSL (PPP over Ethernet) is not supported during installation.

In the first step, shown in Figure 3-25, the network card to be configured must be selected. sysinst will
determine a list of available network interfaces, present them and ask which one to use.

26

Chapter 3 Example installation

Figure 3-25. Which network interface to configure

Which network device would you like to use?

Available interfaces

Note: The exact names of your network interfaces depend on the hardware you use. Example
interfaces are “wm” for Intel Gigabit interfaces, “ne” for NE2000 and compatible ethernet cards, and
“ath” for Atheros based wireless cards. This list is by no means complete, and NetBSD supports
many more network devices.

If your network device is not listed in Figure 3-25, maybe it has not been properly detected. To get a
list of network interfaces available on your system, interrupt the installation process by pressing
“Ctrl+Z”, then enter

ifconfig -a

wmO: flags=0x8802<BROADCAST, SIMPLEX, MULTICAST> mtu 1500
capabilities=2bf80<TS04, IP4CSUM_Rx, IP4CSUM_Tx, TCP4CSUM_Rx>
capabilities=2bf80<TCP4CSUM_Tx, UDP4CSUM_Rx, UDP4CSUM_Tx, TCP6CSUM_Tx>
capabilities=2bf80<UDP6CSUM_Tx>
enabled=0
ec_capabilities=7<VLAN_MTU, VLAN_HWTAGGING, JUMBO_MTU>
ec_enabled=0
address: 08:00:27:7e:85:d7
media: Ethernet autoselect (1000baseT full-duplex)
status: active

1lo0: flags=0x8048<LOOPBACK, RUNNING, MULTICAST> mtu 33624

If the desired interface has not been shown, get more information about all the devices found during
system boot. Type:

dmesg | more

As instructed, you can return to the NetBSD installation by typing either “exit” or “*D” (“Ctrl+D”).

Next, you have a chance to set your network medium. Press “Enter” to choose the default.

27

Chapter 3 Example installation

Note: It is unlikely that you will need anything other than the default here. If you experience problems
like very slow transfers or timeouts, you may, for example, force different duplex settings for ethernet
cards. To get a list of supported media and media options for a given network device (“wm0”, for
example), escape from sysinst by pressing “Ctrl+Z”, then enter:

ifconfig -m wmO
wmO: flags=0x8802<BROADCAST, SIMPLEX, MULTICAST> mtu 1500
capabilities=2bf80<TS04, IP4CSUM_Rx, IP4CSUM_Tx, TCP4CSUM_Rx>
capabilities=2bf80<TCP4CSUM_Tx, UDP4CSUM_Rx, UDP4CSUM_Tx, TCP6CSUM_Tx>
capabilities=2bf80<UDP6CSUM_Tx>
enabled=0
ec_capabilities=7<VLAN_MTU, VLAN_HWTAGGING, JUMBO_MTU>
ec_enabled=0
address: 08:00:27:7e:85:d7
media: Ethernet autoselect (1000baseT full-duplex)
status: active
supported Ethernet media:
media none
media l10baseT
media l0baseT mediaopt full-duplex
media 100baseTX
media 100baseTX mediaopt full-duplex
media autoselect

The several values printed after “media” may be of interest here, including keywords like “autoselect”
but also including any “mediaopt” settings.

Return to the installation by typing “exit” or “*D” (“Ctrl+D”).

The next question, shown in Figure 3-26, is whether you want to perform autoconfiguration. This
procedure uses DHCP (Dynamic Host Configuration Protocol). sysinst will fetch a number of defaults
from it, giving most likely the correct settings. This procedure is recommended, unless you want to set a
static IP address, and/or specify some custom parameters.

28

Chapter 3 Example installation

Figure 3-26. Using autoconfiguration

To be able to use the network, we need answers to the following:

Network media type [autoselectl]:

Perform autoconfiguration?

b: No

You will then be asked for your “DNS domain”; if the machine is not in a registered public domain, it
can be left blank.

At the end of this procedure, a list of all the settings is shown, as in Figure 3-27. If they are correct,
choose “Yes”. Otherwise, choosing “No”, the network configuration will restart from the beginning,
giving the opportunity to perform again all the steps (and also to perform a manual configuration).

29

Chapter 3 Example installation

Figure 3-27. Confirm autoconfiguration

The following are the wvalues you entered.

DNS Domain: my.domain
Host Name: localhost
Nameserwver: 192.168.1.1
Primary Interface: wme

Media type: autoselect
Host IP: 192.168.1.39
Netmask: £255.255.255.0
[Pv4 Gateway: 192.168.1.1
[Pvb autoconf :

Are they 0OK?

b: HNo

If you chose “No” in Figure 3-26, you will be asked several questions to manually configure the network.
All the parameters are presented in the form “Parameter_name [default_value]:”. Press “Enter” to use the
default value. If no default value is provided, the parameter will be left blank.

Your host name:

The name by which other machines can usually address your computer. Not used during installation.

Your DNS Domain:

This is the name of the domain you are in. You may leave it blank if you are not in a public domain.

Your IPv4 address:

Enter your numerical Internet Protocol address in “dotted quad” notation here, for example,
192.168.1.3. It will be used as a static IP for your network card.

IPv4 Netmask:

The netmask for your network, either given as a hex value (“Oxffffff00”") or in dotted-quad notation
(“255.255.255.0”).

IPv4 gateway:

Your router’s (or default gateway’s) IP address. Do not use a hostname here!

Your name server:

Your (first) DNS server’s IP address. Again, don’t use a hostname.

30

Chapter 3 Example installation
After answering all of your network configuration info, their list is shown as in Figure 3-27. You will
have a chance to go back and make changes. If you are satisfied with your settings, choose “Yes”.

sysinst will now run a few commands (not displayed in detail here) to configure the network: flushing the
routing table, setting the default route, and testing if the network connection is operational.

Now that you have a functional network connection, the menu in Figure 3-24 will be shown again.
Choose “Get Distribution” to continue: sysinst will download the selected set files to a temporary
directory, and then extract them.

3.11.4 Installing via NFS

If you want to install NetBSD from a server in your local network, NFS is an alternative to FTP.

Note: Using this installation method requires the ability to set up an NFS server, a topic which is not
discussed here.

As shown in Figure 3-28, you must specify: the IP address of the NFS server as “Host”; the directory
exported by the NFS server as “Base directory”; the directory containing the install sets as “Set
directory”.

Figure 3-28. NFS install screen

Enter the nfs host and server directory where the distribution is located.
Remember, the directory should contain the .tgz files and must be nfs
mountable.

: Host
Base directory +bsd-release
Binary set directory ssets
Source set directory
Conf igure network
Exit
Get Distribution

Figure 3-29 shows an example: Host “192.168.1.50” is the NFS server which exports the directory
/home/username/Downloads. The NetBSD install sets are stored in
/home/username/Downloads/sets on the NFS server. Choose “Continue” to start the installation of
the distribution sets.

31

Chapter 3 Example installation

Figure 3-29. NFS example

Enter the nfs host and server directory where the distribution is located.
Remember, the directory should contain the .tgz files and must be nfs
mountable.

Host 192.168.1.50

Base directory +home username-Downloads
Binary set directory sets

Source set directory

Conf igure network

Exit

: Get Distribution

3.12 Extracting sets

After the method to obtain the distribution sets has been chosen, and (if applicable) after those sets have
been transferred, they will be extracted into the new NetBSD file system.

A message (see Figure 3-30) will let you know that the set extraction is now completed and that you have
the opportunity to perform some essential configuration before finishing the NetBSD installation.

32

Chapter 3 Example installation
Figure 3-30. Extraction of sets completed

The extraction of the selected sets for NetBSD-8.0 is complete.

The system
is now able to boot from the selected hard disk.
installation,

To complete the

sysinst will give you the opportunity to configure some
essential things first.

it enter to continue

3.13 System configuration

A menu with all the available configuration options is shown like in Figure 3-31. After the configuration
of each item, you will get back to this menu, having the chance to select another one.

33

Chapter 3 Example installation

Figure 3-31. Configuration menu

Conf igure the additional items as needed.

a: Configure network conf igure

Timezone uTc
Root shell <binssh
Change root password s EMPTY e
Enable installation of binary packages install
Fetch and unpack pkgsrc for building from source install
Enable sshd

Enable ntpd

Run ntpdate at boot

Enable mdnsd

Enable xdm

Enable cgd

Enable lvm

Enable raidframe

Add a user

Finished configuring

ol =y = B

i:
J:
k:
l:
m:

¥ Q=

If you have not yet configured Network, you can do it now, following the same procedure already
presented in Section 3.11.3.

The timezone can also be configured. It is Universal Time Coordinated (UTC) by default. Use the
two-level menu of Continents/Countries and cities shown in Figure 3-32 to select your local timezone
with the Return key. After a valid selection, the cursor will automatically be moved to an “Exit” item.
Then, simply press Return to exit the timezone selection.

34

Chapter 3 Example installation

Figure 3-32. Selecting the system’s time zone

Please choose the timezone that fits you best from the list below.
Press RETURN to select an entry.

R}

Press "x° followed by RETURN to gquit the timezone selection.

Default: uTcC
Selected: uTcC
Local time: Sat Oct 6 ©9:32:54 2018 UTC

Africa~
Antarctica~
Arctic~
Azia~
Atlantic~
Australia~
Brazil~

CET
CSTeCDT
Canada~
Chiler

<: page up, >: page down

The next item in Figure 3-31 allows you to choose which command-line interpreter - also known as
“shell” - will be used for the root account. The default is the Bourne-compatible Almquist shell, sh(1).
Other choices are the Korn shell (ksh(1)) and the C shell (csh(1)). If, upon reading this, you don’t have
some idea on which shell you prefer, simply use the default, as this is a highly subjective decision.
Should you later change your mind, root’s shell can always be changed.

35

Chapter 3 Example installation

Figure 3-33. Choosing a shell

Conf igure the additional items as needed.

Root shell

b: sbin-sksh
c: sbinrscsh

The root account still does not have a password. It is recommended to set it at this point for security
reasons, choosing the related item in Figure 3-31.

Figure 3-34. Set a root password?

The root password of the newly installed system has not yet been initialized,
and is thus empty. Do you want to set a root password for the system now?

yes or no?

b: No

When you agree to set a root password, sysinst will run the passwd(1) utility for you. Please note that the

36

Chapter 3 Example installation

password is not echoed.

Figure 3-35. Setting root password

Status:
Command :

ew password:
Retype new password:

To ease the future installation of binary packages, it is possible to make a preliminary configuration of
pkgin: choose “Enable installation of binary packages” in Figure 3-31. pkgin will be fetched and
installed from an FTP server, so be sure that the network configuration has already been done. Specify
the “Host” name, its “Base directory” (where the packages for all the NetBSD ports are stored), and the
“Package directory”, related to your port and your NetBSD version. Usually, the defaults are correct.

37

Chapter 3 Example installation

Figure 3-36. Enabling installation of binary packages

Enabling binary packages with pkgin requires setting up the repository. The
following are the host, directory, user, and password that will be used. If
"user" is "ftp", then the password is not needed.

Host ftp.NetB5SD.org

Base directory pub-pkgsrc-/packages-NetBSD
Package directory ~amdb4-8.0-A11

User ftp

Password

Proxy

g: Additional packages

Conf igure network
Quit installing binary pkgs
Install pkgin and update package summary

Choosing “ftp” as “User”, no password will be required. As shown in Figure 3-36, you can also choose
to install one or more additional packages, typing their names using a space as separator, pressing

g9

“Enter” at the end. To proceed to the installation, type “x”” and press “Enter”. A “pkgin update” will be
run after the installation of pkgin, to let the repository be immediately up to date.

Figure 3-37. Additional packages

Enabling binary packages with pkgin requires setting up the repository. The
following are the host, directory, user, and password that will be used. If
"user" is "ftp", then the password is not needed.

Host ftp.NetB3D.org

Base directory pub-spkgsrc-packages-NetBSD
Package directory ~amd64-8.0-A11

User ftp

Pas=sword

Proxy

byj: Additional packages

Add nal packages: bash tree

38

Chapter 3 Example installation

After the procedure is completed, sysinst will show the command to install further packages. Hit “Enter”
to go back to the configuration menu.

If you need or want to build packages from their source code via pkgsrc, choose “Fetch and unpack
pkgsrc for building from source” in Figure 3-31. As before, specify the “Host” name; “pkgsrc directory”
is the sources base directory. Defaults are usually the best values. A single archive file will be
downloaded, for example pkgsrc.tgz: if you want to automatically remove it after the pkgsrc
installation, move the cursor on “Delete after install” and press “Enter”. To proceed with the download,

[T}

type “x” and then press “Enter”.

Figure 3-38. Fetch and unpack pkgsrc

Installing pkgsrc requires unpacking an archive retrieved over the network.
The following are the host, directory, user, and password that will be used.
If "wser" is "ftp", then the password is not needed.

: Host ftp.NetB5SD.org

: pkgsrc directory pubspkgsrcsstable
: User ftp

: Password

: Proxy

: Transfer directory susrsINSTALL

: Delete after install \ [}

! Quit without installing pkgsrc

: Fetch and unpack pkgsrc

a
b
C
i
e
f
q
h

N

In the initial configuration menu (Figure 3-31), it is also possible to enable some useful services such as
the daemon listening for ssh. For information about ntpd and ntpdate, refer to Section 29.2. xdm handles
the authentication and the session of users through an X display. Usage of the Cryptographic Device
Driver (cgd) is shown in Chapter 14. Logical Volume Manager (lvm) is documented in Chapter 17,
raidframe in Chapter 16. mdnsd provides a Multicast DNS service, and also DNS Service Discovery on
NetBSD: check mdnsd(8) for more details.

Finally, the menu in Figure 3-31 lets you add a regular user to the system. For all the base information
about users and root accounts, as well as the wheel group, refer to Section 5.6.

When you completed the configuration of all the desired items, choose “Finished configuring” in Figure
3-31.

3.14 Finishing the installation

At this point the installation is finished.

39

Chapter 3 Example installation

Figure 3-39. Installation completed

The installation of NetBS5D-8.0 is now complete. The system should boot from
hard disk. Follow the instructions in the INSTALL document about final

conf iguration of your system. We also recommend reading the afterboot(8)
manpage: it contains a list of things to be checked after the first complete
boot.

At a minimum, you should edit retcsrc.conf to match your needs. 3ee
setcsdefaultssrc.conf for the default values.

it enter to continue

After passing the dialog that confirms the installation, sysinst will return to the main menu. Remove any
installation media (CD, floppy, etc.) and choose “Reboot the computer” to boot your new NetBSD
installation.

Figure 3-40. Reboot to finish installation

NetBSD-ramdb64 8.0

Thiz menu-driven tool is designed to help you install HNetBSD to a hard disk,
or upgrade an existing NetB3D system, with a minimum of work.

In the following menus type the reference letter (a, b, c, ...) to select an
item, or type CTRL+N-CTRL+F to s=elect the next- previous item.

The arrow keys and Page-up-Page-down may also work.

fictivate the current selection from the menu by typing the enter key.

Thank you for using NetBSD?
NetBSD-8.0 Install System

a: Install NetBSD to hard disk

b: Upgrade NetB3D on a hard disk

c: Re-install sets or install additional sets
Utility menu

Config menu

Exit Install System

e
f
X

40

Chapter 4
Upgrading NetBSD

This chapter describes the binary upgrade of a NetBSD system. There are a variety of alternatives to
perform this procedure, and the following sections will guide you through them:

4.1 Using sysinst

4.1.1 Overview

To do the upgrade, you must have some form of bootable media (CD-ROM, USB drive, floppy, etc.)
available and at least the base and kern distribution sets. Since files already installed on the system are
overwritten in place, you only need additional free space for files which weren’t previously installed or
to account for growth of the sets between releases. Usually this is not more than a few megabytes.

Note: Since upgrading involves replacing the kernel, boot blocks, and most of the system binaries, it
has the potential to cause data loss. Before beginning, you are strongly advised to back up any
important data on the NetBSD partition or on any other partitions on your disk.

The upgrade procedure is similar to an installation, but without the hard disk partitioning. sysinst will
attempt to merge the settings stored in your /etc directory with the new version of NetBSD. Also, file
systems are checked before unpacking the sets. Fetching the binary sets is done in the same manner as in
the installation procedure.

4.1.2 The INSTALL document

Before doing an upgrade it is essential to read the release information and upgrading notes in one of the
INSTALL files: this is the official description of the upgrade procedure, with platform specific
information and important details. It can be found in the root directory of the NetBSD release (on the
install CD or on the FTP server).

It is advisable to print the INSTALL document out. It is available in four formats: .txt, .ps, .more, and
html.

4.1.3 Performing the upgrade

The following section provides an overview of the binary upgrade process. Most of the following sysinst
dialogs are similar to those of the installation process. More verbose descriptions and explanations of the
dialogs are available in Chapter 3.

After selecting the installation language and the keyboard type, the main menu appears. Choosing option
“b: Upgrade NetBSD on a hard disk” will start the the upgrade process.

41

Chapter 4 Upgrading NetBSD

Figure 4-1. Starting the upgrade

NetBSD-amdb4 §.0

This menu-driven tool is designed to help you install NetBSD to a hard disk,
or upgrade an existing NetBSD system, with a minimum of work.

In the following menus type the reference letter (a, b, c, ...) to select an
item, or type CTRL+N-CTRL+P to select the next-/previous item.

The arrow keys and Page-up-Page-down may also work.

Activate the current selection from the menu by typing the enter key.

Thank you for using NetB5D?

NetB5D-8.0 Install System

a: Install NetBSD to hard disk
: Re—install sets or install additional sets
Reboot the computer
Utility menu
Config menu

i
c
d:
e
f
x: Exit Install System

The dialog in Figure 4-2 will request permission to continue with the upgrade. At this point nothing has
been changed yet and the upgrade can still be cancelled. This is a good time to ask yourself whether you
have made a backup, and if you know for certain that you will be able to restore from it.

Figure 4-2. Continuing the upgrade

0k, lets upgrade MetBSD on your hard disk. As always, this will change
information on your hard disk. You should have made a full backup before
this proceduret Do you really want to wupgrade NetB3SD? (This is your last
warning before this procedure starts modifying your disks.)

yes or no?

a: No

42

Chapter 4 Upgrading NetBSD

After choosing to continue with “Yes”, the next dialog will ask you to specify the hard disk with the
NetBSD system that shall be upgraded.

Figure 4-3. Choosing the hard drive

On which disk do you want to upgrade MetBSD?

Available disks

a: wd® (40G, QEMU HARDDISK)

x: Exit

The system used for the example has only one hard disk available: “wd0”.

At this point, sysinst will perform a check of the file system to ensure its integrity.

43

Chapter 4 Upgrading NetBSD
Figure 4-4. File system check

B3R AR inished
Gl EN i =bin/fsck_ffs -p —q sdev /ruwdBa
Hit enter to continue

: DIR 1=6451Z CONNECTED. PARENT WAS I1=2

: UNREF DIR [=43008 OWNER=root MODE=40755

: SIZE=512 MTIME=3ep 19 00:49 2007 (RECONNECTED)

: DIR 1=43008 CONNECTED. PARENT WAS I1=2

: UNREF DIR [=21504 OWNER=root MODE=40755

: SIZE=512 MTIME=3ep 19 00:49 2007 (RECONNECTED)

: DIR 1=21504 CONNECTED. PARENT WAS I=2

: LINKE COUNT DIR I=2 OWNMER=root MODE=40755

: 3IZE=512 MTIME=Sep 19 00:49 Z007Y COUNT & SHOULD BE 3 (ADJUSTED)
: UNREF FILE 1I=3 OWNER=root MODE=100444

: SIZE=55252 MTIME=Sep 19 00:49 Z007? (RECONNECTED)

: FREE BLE COUNT(S) WRONG IN SUPERBLK (SALUAGED)

: SUMMARY INFORMATION BAD (SALVAGED)

: ? files, 33 used, 943102 free (30 frags, 117884 blocks, 0.0x fragmen

: MARKING FILE SYSTEHM CLEAN

The next step is to choose which type of bootblocks to install.

Figure 4-5. Choosing bootblocks

Would you like to install the normal set of bootblocks or serial bootblocks?

Normal bootblocks use the BIOS console device as the console (usually the
monitor and keyboard). Serial bootblocks use the first serial port as the
console.

Selected bootbhlock: BIOS console

Boothlocks selection

a: Use BIODS console

b: Use serial port com®

c: Use serial port coml

d: Use serial port com2

e: Use serial port com3

f: Set serial baud rate

g: Use existing bootblocks
x: Exit

The following dialog provides a menu to choose the installation type. The choices are “Full installation”,
“Installation without X117, “Minimal installation”, or “Custom installation”.

44

Chapter 4 Upgrading NetBSD

Figure 4-6. Choosing the distribution filesets

The HetBSD distribution is broken into a collection of distribution sets.
There are some basic sets that are needed by all installations and there are
some other sets that are optional. You may choose to install a core set
(Minimal installation), all of them (Full installation), or a custom group of
sets (Custom installation).

Select your distribution

a: Full installation
b: Installation without X11
c: Minimal installation

Custom installation

Abandon installation

The following dialog asks for the install method of choice and provides a list of possible options. The
install medium contains the new NetBSD distribution sets. You will be prompted for different
information depending on which option you choose. For example, a CD-ROM or DVD install requires
you to specify which device to use and which directory the sets are in, while an FTP install requires you
to configure your network and specify the hostname of an FTP server. More details can be found in
Section 3.11.

45

Chapter 4 Upgrading NetBSD

Figure 4-7. Install medium

Your disk is now ready for installing the kernmel and the distribution sets.
As noted in your INSTALL notes, you have sewveral options. For ftp or nfs,
you must be connected to a network with access to the proper machines.

dets selected 4, processed 0, Next set kern-GENERIC.

Install from

a: CD-ROM ~» DUD - install image media
: HTTP

FTP

NF3

Floppy

Unmounted fs

Local directory
Skip set

Skip set group
Abandon installation

b:
[
d:
e:
f:
q:
h:

[

sysinst will now unpack the distribution sets, replacing your old binaries. After unpacking these sets, it
runs the postinstall(8) script to perform various system cleanup and configuration update tasks. If
postinstall produces errors, you will have to manually resolve the issues it brings up. See postinstall’s
man page for more information. Even after a successful postinstall run, it is advisable to use etcupdate(8)
to aid in merging any other configuration changes. You should also read the remarks in INSTALL about
upgrading, as specific compatibility issues are documented there.

46

Chapter 4 Upgrading NetBSD

Figure 4-8. Upgrade complete

The upgrade to NetBSD-8.0 is now complete. You will now need to follow the
instructions in the INSTALL document as to what you need to do to get your
system reconf igured for your situation. Remember to (relread the
afterboot(8) manpage as it may contain new items since your last upgrade.

it enter to continue

When you are back at the main menu, remove the boot medium (if applicable) and reboot. Have fun with
your new version of NetBSD!

4.2 Using sysupgrade

The sysupgrade utility (currently found in pkgsrc/sysutils/sysupgrade) allows you to upgrade a
running system to a newer binary release.

Note: Take care when upgrading across major releases - ensure your running kernel is never newer
than the userspace.

One of the benefits of sysupgrade is that it is an integrated and almost-unattended solution: the tool
fetches the new kernel and distribution sets from remote sites if you desire and performs the upgrade
without user intervention until new changes to the configuration files need to be merged.

Let’s assume you are running NetBSD/amd64 9.1 and you wish to upgrade to NetBSD 9.2. The
procedure to do so would be to run the following command:

sysupgrade auto https://cdn.NetBSD.org/pub/NetBSD/NetBSD-9.2/amdé64

And that’s all that it takes. This will proceed to download the kernel and sets appropriate for your
machine, unpack them and assist you in merging new configuration changes. Do not forget to reboot
afterwards.

47

Chapter 4 Upgrading NetBSD

When upgrading between major releases (e.g. between NetBSD 8.2 and 9.2), take care to first upgrade
the kernel and modules:

sysupgrade fetch https://cdn.NetBSD.org/pub/NetBSD/NetBSD-9.2/amd64
sysupgrade kernel

sysupgrade modules

reboot

sysupgrade sets

sysupgrade etcupdate

sysupgrade postinstall

sysupgrade clean

HH H H = FH FH H H

reboot

For more details, please see the included sysupgrade(8) manual page and the
/usr/pkg/etc/sysupgrade.conf configuration file.

48

lll. System configuration,
administration and tuning

Chapter 5
The first steps on NetBSD

After installing and rebooting, the computer will boot from the hard disk. If everything went well you’ll
be looking at the login prompt within a few seconds (or minutes, depending on your hardware). The
system is not yet fully configured, but basic configuration is easy. You will see how to quickly configure
some important things, and in doing so you will learn some basics about how the system works.

5.1 Troubleshooting

5.1.1 Boot problems

If the system does not boot it could be that the boot manager was not installed correctly or that there is a
problem with the MBR (Master Boot Record). Boot the machine from your install medium (CD, DVD,
floppy, etc.) and when you see the boot menu, select the option to drop to the boot prompt.

type "?" or "help" for help.
> ?

commands are:

boot [xdNx:][filename] [-12acdgsvxz]
(ex. "hdOa:netbsd.old -s")
ls [path]

dev xd[N[x]]:

consdev {pc|lcom[0123] |com[0123]kbd]|auto}
modules {enabled|disabled}

load {path_to_module}

multiboot [xdNx:][filename] [<args>]
help|?

quit

> boot hdOa:netbsd

The system should now boot from the hard disk. If NetBSD boots correctly from the hard disk, there is
probably a Master Boot Record problem. You can install the boot manager or modify its configuration
with the fdisk -B command. See Section 22.1 for a detailed description.

5.1.2 Misconfiguration of /etc/rc.conf

If you or the installation software haven’t done any configuration of /etc/rc.conf (sysinst normally
will), the system will drop you into single user mode and show the message

/etc/rc.conf is not configured. Multiuser boot aborted

50

Chapter 5 The first steps on NetBSD

When the system asks you to choose a shell, simply press RETURN to get to a /bin/sh prompt. If you are
asked for a terminal type, respond with vt220 (or whatever is appropriate for your terminal type) and
press RETURN. You may need to type one of the following commands to get your delete key to work
properly, depending on your keyboard:

stty erase ’'“h’

stty erase %7’/

At this point, you need to configure at least one file in the /etc directory. However, the root file system
(/) is mounted read-only, so you will first need to make it writable with:

/sbin/mount -u -w /

Next, take a look at the /etc/rc.conf file. Modify it to your tastes, making sure that you set
“rc_configured=YES ” so that you don’t end up in this position again. Default values for the various
programs can be found in /etc/defaults/rc.conf. More complete documentation can be found in
rc.conf(5).

2

When you have finished, type exit at the prompt to leave the single-user shell and continue with the
multi-user boot.

5.2 The man command

If you have never used a Unix(-like) operating system before, your best friend is now the man command,
which displays a manual page. The NetBSD manual pages are among the best and most detailed you can
find, although they are very technical.

A good manual to read after booting a new NetBSD system is afterboot(8). It contains information about
various necessary and useful configuration settings.

man name shows the man page of the “name” command and man -k name shows a list of man pages
dealing with “name” (you can also use the apropos command).

To learn the basics of the man command, type:
man man

Manual pages contain not only information about commands but also descriptions of some NetBSD
features and structures. For example, take a look at the hier(7) man page, which describes in detail the
layout of the filesystem used by NetBSD.

man hier

Other similar pages are release(7) and pkgsrc(7).

man 8 intro

Manual pages are divided in several sections, depending on what they document:

1. general commands (tools and utilities), see intro(1)

2. system calls and error numbers, see intro(2)

51

Chapter 5 The first steps on NetBSD

. C libraries, see intro(3)

. special files and hardware support, see intro(4)
. file formats, see intro(5)

. games, see intro(6)

. miscellaneous information pages, see intro(7)

o N N »n B~ W

. system maintenance and operation commands, see intro(8)
9. kernel internals, see intro(9)

A subject may appear in more than one section of the manual; to view a specific page, supply the section
number as an argument to the man command. For example, time appears in section 1 (the time user
command) and in section 3 (the time function of the C library). To see the man page for the time C
function, write:

man 3 time
To see all the available pages:

man -w time

man -a time

5.3 Editing configuration files

Other than a shell, a text editor is the most essential tool for NetBSD system administration.

There are two provided in the base system

« ed(1), a line orientated text editor. ed is a very simplistic text editor. It has a command mode (active
when first started) and an input mode. Its primary advantage is that it will work even without a correct
terminal type set. In an emergency, ed is worth knowing, but note that vi(1) is available in /rescue,
which brings us to...

» vi(1), a screen orientated text editor. vi is the only screen editor available in the base install, and
requires a valid terminal type to run. Refer to Chapter 6 to learn more about NetBSD’s default editor.

Advice: Before you continue you should know or learn how to open, edit and save files within vi.
Make sure to read Chapter 6.

5.4 Login

For the first login you will use the root user, which is the only user defined at the end of the installation.
At the password prompt type the password for root that you set during the installation. If you didn’t set a
password, just press Enter.

NetBSD/1386 (Amnesiac) (ttyEO0)

login: root

password:

52

Chapter 5 The first steps on NetBSD

We recommend creating a non-root account and using su(l) for
root access.
#

5.5 Changing the root password

If you did not set a password for root during the installation, you should use the /usr/bin/passwd
command to do so now.

/usr/bin/passwd

Changing local password for root.
New password:

Retype new password:

Passwords are not displayed on the screen while you type.

Choose a password that has numbers, digits, and special characters (not space) as well as from the upper
and lower case alphabet. Do not choose any word in any language. It is common for an intruder to use
dictionary attacks.

5.6 Adding users

For security reasons, it is bad practice to login as root during regular use and maintenance of the system.
Instead, administrators are encouraged to add a regular user, add the user to the wheel group, then use
the su(1) command when root privileges are required. NetBSD offers the useradd(8) utility to create user
accounts. For example, to create a new user:

useradd -m joe

The defaults for the useradd command can be changed; see the useradd(8) man page.

User accounts that can su to root are required to be in the "wheel" group. This can be done when the
account is created by specifying a secondary group:

useradd -m -G wheel joe
As an alternative, the usermod(8) command can be used to add a user to an existing group:
usermod -G wheel joe

In case you just created a user but forgot to set a password, you can still do that later using the passwd(1)
command.

passwd joe

Note: You can edit /etc/group directly to add users to groups, but do not edit the /etc/passwd
directly; use vipw(8).

53

Chapter 5 The first steps on NetBSD

5.7 Shadow passwords

Shadow passwords are enabled by default. What this means is that all the passwords in /etc/passwd
are simply “*”; the encrypted passwords are stored in a file that can only be read by root,
/etc/master.passwd. When you start vipw(8) to edit the password file, the program opens a copy of
/etc/master.passwd; when you exit, vipw checks the validity of the copy, creates a new
/etc/passwd and installs the new /etc/master.passwd file. Finally, vipw launches pwd_mkdb(8),
which creates the files /etc/pwd.db and /etc/spwd.db, two databases which are equivalent to
/etc/passwd and /etc/master.passwd but faster to process.

It is very important to always use vipw and the other tools for account administration (chfn(1), chsh(1),
chpass(1), passwd(1)) and to never directly modify /etc/master.passwd or /etc/passwd.

5.8 Changing the keyboard layout

If you do not have a US layout keyboard, you will probably want to change keymaps. For example, to
use an italian keyboard, enter the following command:

wsconsctl -k -w encoding=it
encoding —-> it

To save the keyboard layout permanently, add the following line to the /etc/wscons.conf file:
encoding it

See Section 8.1.2.1 for a list of available keymaps.

5.9 System time

NetBSD, like all Unix systems, uses a system clock based on UTC (Coordinated Universal Time) and
this is what you should set your system clock to. If you want to keep the system clock set to the local
time (because, for example, you have a dual boot system with Windows installed), you must notify
NetBSD, adding rtclocaltime=YES to /etc/rc.conf:

echo rtclocaltime=YES >> /etc/rc.conf
sh /etc/rc.d/rtclocaltime restart

Note: Alternatively, it is possible to configure Windows 7 and beyond to cope with the RTC being
UTC. As alluded to in this Microsoft Knowledge Base article
(http://support.microsoft.com/kb/2922223), the way to do this is to add a DWORD registry key named
RealTimelsUniversal, with a value of 1, to
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\TimeZonelnformation.

The number of minutes west of GMT is calculated automatically and is set in the kern.rtc_offset
sysctl variable.

To display the current setting of the kern.rtc_offset variable:

sysctl kern.rtc_offset

54

Chapter 5 The first steps on NetBSD
kern.rtc_offset = -60

This automatic configuration only works if you have set the proper time zone with a symbolic link to
/etc/localtime. Normally this is done as part of the install procedure, but if for some reason it
wasn’t, you can set it by creating a symbolic link from a file in the /usr/share/zoneinfo directory to

/etc/localtime.

The following example sets the time zone to Eastern Europe Summer Time:

1ln -fs /usr/share/zoneinfo/Europe/Helsinki /etc/localtime

5.10 Secure Shell (ssh(1))

By default, all services are disabled in a fresh NetBSD installation, and ssh(1) is no exception. You may
wish to enable it so you can log in to your system remotely. Set sshd=YES in /etc/rc.conf and then
start the server with the command

/etc/rc.d/sshd start

The first time the server is started, it will generate a new keypair, which will be stored inside the
directory /etc/ssh.

5.11 Basic configuration in /etc/rc.conf

NetBSD uses /etc/rc.conf to determine what will be executed when the system boots. Understanding
this file is important. The rc.conf(5) manual page contains a detailed description of all available options.

The /etc/defaults/rc.conf file contains the default values for most settings. To override a default
value, the new value must be put into /etc/rc.conf. The definitions there override the ones in
/etc/defaults/rc.conf (which you should leave unchanged).

man rc.conf

The first modifications are:

« Set “rc_configured=YES” (this modification should already have been done by the installation
software.)

+ Set “dhcpcd=YES” to configure your system’s network using DHCP.

+ Define a hostname for your machine (use a fully qualified hostname, i.e., one including domain). If
you have a standalone machine you can use any name (for example, vigor3.your.domain). If your
machine is connected to a network, you should supply the correct name.

« If your machine is connected to a local network or the Internet through a router, set the defaultroute
variable to the IP address of your router (sometimes called a default gateway). For example,
“defaultroute=192.168.1.1".

55

Chapter 5 The first steps on NetBSD

5.12 Basic network settings

To resolve the names and IP addresses of remote hosts, the system needs access to a (remote or local)
DNS nameserver. Tell the system which nameserver(s) to use by adding the IP address of one or more
nameservers to the /etc/resolv.conf file, using the following as an example:

nameserver 145.253.2.75

To set the names of local hosts that are not available through DNS, edit the /etc/hosts file, which has
the form:

IP-address hostname host
For example:

192.168.1.3 vigor3.your.domain vigor3

5.13 Mounting a CD-ROM

New users are often surprised by the fact that although the installation program recognized and mounted
their CD-ROM perfectly, the installed system seems to have “forgotten” how to use the CD-ROM. There
is no special magic for using a CD-ROM; you can mount it like any other file system. All you need to
know is the device name and some options to the mount(8) command. You can find the device name with
the aforementioned dmesg(8) command. For example, if dmesg displays:

dmesg | grep “cd
cd0 at atapibusO drive 1: <ASUS CD-S400/A, , V2.1H> type 5 cdrom removable

the device name is cd0, and you can mount the CD-ROM with the following commands:

mkdir /cdrom
mount -t cd9660 -o ro /dev/cdOa /cdrom

To make things easier, you can add a line to the /etc/fstab file:
/dev/cdOa /cdrom c¢d9660 ro,nocauto 0 0

Without the need to reboot, you can now mount the CD-ROM with:
mount /cdrom

When the CD-ROM is mounted you can’t eject it manually; you will have to unmount it before you can
do that:

umount /cdrom
There is also a software command which unmounts the CD-ROM and ejects it:

eject /dev/cdOa

56

Chapter 5 The first steps on NetBSD

5.14 Mounting a floppy

To mount a floppy you must know the name of the floppy device and the file system type of the floppy.
Read the fdc(4) manpage for more information about device naming, as this will differ depending on the
exact size and kind of your floppy disk. For example, to read and write a floppy in MS-DOS format you
use the following command:

mount -t msdos /dev/fd0a /mnt

Instead of /mnt, you can use another directory of your choice; you could, for example, create a /£ 1loppy
directory like you did for the CD-ROM. If you do a lot of work with MS-DOS floppies, you will want to
install the mtools package, which enables you to access a MS-DOS floppy (or hard disk partition)
without the need to mount it. It is very handy for quickly copying a file to or from a floppy:

mcopy foo bar a:
mcopy a:baz.txt baz
mcopy a:*.jpg .

5.15 Installing additional software

5.15.1. Using packages from pkgsrc

If you wish to install any of the software freely available for UNIX-like systems you are strongly advised
to first check the NetBSD package system, pkgsrc (http://www.pkgsrc.org). pkgsrc automatically handles
any changes necessary to make the software run on NetBSD. This includes the retrieval and installation
of any other packages on which the software may depend.

« See the list of available packages
(https://cdn.NetBSD.org/pub/pkgsrc/current/pkgsrc/README-all.html)

« Precompiled binaries are available on the NetBSD FTP server for most ports. To install them the
PKG_PATH variable needs to be adjusted in the following way (under the sh(1) shell):

PKG_PATH="https://cdn.NetBSD.org/pub/pkgsrc/packages/NetBSD/$ (uname -p)/$(uname -r | cut -d_ -f1)
export PKG_PATH

Applications can now be installed by the superuser root with the pkg_add command:

pkg_add -v perl
pkg_add -v apache
pkg_add -v firefox

The above commands will install the Perl programming language, Apache web server, and the Firefox
web browser as well as all the packages they depend on.

It is recommended you install and use pkgin for most non-trivial binary package management tasks,
and managing upgrades. pkgin can be installed from the post-installation configuration menu in
sysinst, or afterwards using pkg_add on a live system:

pkg_add -v pkgin

It maintains a local database of packages that are on the remote server, you can fetch the database with:

57

Chapter 5 The first steps on NetBSD

pkgin update

Its usage is oriented on the package tools you have with other operating systems. To search the
package database for a word ‘stat‘, use

pkgin search WORD

To install a package (in this case ‘fscd*), just type

pkgin install fluxbox

To upgrade installed packages:

pkgin upgrade

You should read the manpage to know about more actions you can do with pkgin.

All details about package management can be found in The pkgsrc guide
(http://www.NetBSD.org/docs/pkgsrc/index.html)

5.15.2. Storing third-party software

On many UNIX-like systems the directory structure under /usr/local is reserved for applications and
files which are independent of the system’s software management. This convention is the reason why
most software developers expect their software to be installed under /usr/local. NetBSD has no
/usr/local directory, but it can be created manually if needed. NetBSD does not care about anything
installed under /usr/local, so this task is left to you as the system administrator.

5.16 Security alerts

By the time that you have installed your system, it is quite likely that bugs in the release have been
found. All significant and easily fixed problems will be reported at
http://www.NetBSD.org/support/security/. It is recommended that you check this page regularly.

5.17 Stopping and rebooting the system

Use one of the following two shutdown commands to halt or reboot the system:

shutdown -h now

shutdown -r now
Two other commands to perform the same tasks are:

halt
reboot

halt, reboot and shutdown are not synonyms: the latter is more sophisticated. On a multiuser system you
should really use shutdown, which allows you to schedule a shutdown time and notify users. It will also
take care to stop processes properly. For more information, see the shutdown(8), halt(8) and reboot(8)
manpages.

58

Chapter 6
Editing

6.1 Introducing vi

It is not like the vi editor needs introducing to seasoned UNIX users. The vi editor, originally developed
by Bill Joy of Sun Microsystems, is an endlessly extensible, easy to use light ASCII editor and the bane
of the newbie existence. This section will introduce the vi editor to the newbie and perhaps toss in a few
ideas for the seasoned user as well.

The first half of this section will overview editing, saving, yanking/putting and navigating a file within a
vi session. The second half will be a step by step sample vi session to help get started.

This is intended as a primer for using the vi editor, it is not by any means a thorough guide. It is meant to
get the first time user up and using vi with enough skills to make changes to and create files.

6.1.1 The vi interface

Using the vi editor really is not much different than any other terminal based software with one
exception, it does not use a tab type (or curses if you will) style interface, although many versions of vi
do use curses it does not give the same look and feel of the typical curses based interface. Instead it
works in two modes, command and edit. While this may seem strange, it is not much different than
windows based editing if you think about it. Take this as an example, if you are using say gedit and you
take the mouse, highlight some text, select cut and then paste, the whole time you are using the mouse
you are not editing (even though you can). In vi, the same action is done by simply deleting the whole
line with dd in command mode, moving to the line you wish to place it below and hitting p in command
mode. One could almost say the analogy is “mouse mode vs. command mode” (although they are not
exactly identical, conceptually the idea is similar).

To start up a vi session, one simply begins the way they might with any terminal based software:
$ vi filename

One important note to remember here is that when a file is edited, it is loaded into a memory buffer. The
rest of the text will make reference to the buffer and file in their proper context. A file only changes when
the user has committed changes with one of the write commands.

6.1.2 Switching to Edit Mode

The vi editor sports a range of options one can provide at start up, for the time being we will just look at
the default startup. When invoked as shown above, the editor’s default startup mode is command mode,
S0 in essence you cannot commence to typing into the buffer. Instead you must switch out out of
command mode to enter text. The following text describes edit start modes:

59

Chapter 6 Editing

a Append after cursor.

A Append to end of line.

C Change the rest of current line.
cw Change the current word.

i Insert before cursor.

I Insert before first non blank line.
o Open a line below for insert

O Open a line above for insert.

6.1.3 Switching Modes & Saving Buffers to Files

Of course knowing the edit commands does not do much good if you can’t switch back to command
mode and save a file, to switch back simply hit the ESC key. To enter certain commands, the colon must
be used. Write commands are one such set of commands. To do this, simply enter :.

Hitting the colon then will put the user at the colon (or command if you will) prompt at the bottom left
corner of the screen. Now let us look at the save commands:

:w Write the buffer to file.
:wq Write the buffer to file and quit.

6.1.4 Yanking and Putting

What good is an editor if you cannot manipulate blocks of text? Of course vi supports this feature as well
and as with most of the vi commands it somewhat intuitive. To yank a line but not delete it, simply enter
yy or Y in command mode and the current line will be copied into a buffer. To put the line somewhere,
navigate to the line above where the line is to be put and hit the p key for the “put” command. To move a
line, simply delete the whole line with the dd command, navigate and put.

6.1.4.1 Oops | Did Not Mean to do that!

Undo is pretty simple, u undoes the last action and U undoes the last line deleted or changes made on the
last line.

6.1.5 Navigation in the Buffer

Most vi primers or tutorials start off with navigation, however, not unlike most editors in order to
navigate a file there must be something to navigate to and from (hence why this column sort of went in
reverse). Depending on your flavor of vi (or if it even is vi and not say elvis, nvi or vim) you can navigate
in both edit and command mode.

For the beginner I feel that switching to command mode and then navigating is a bit safer until one has
practiced for awhile. The navigation keys for terminals that are not recognized or do not support the use
of arrow keys are the following:

60

Chapter 6 Editing

Moves the cursor up one line.
Moves the cursor down one line.
Moves the cursor right one character.
Moves the cursor left one character.

o= e e

If the terminal is recognized and supports them, the arrow keys can be used to navigate the buffer in
command mode.

In addition to simple “one spot navigation” vi supports jumping to a line by simply typing in the line
number at the colon prompt. For example, if you wanted to jump to line 223 the keystrokes from editor
mode would look like so:

ESC
1223

6.1.6 Searching a File, the Alternate Navigational Aid

The vi editor supports searching using regular expression syntax, however, it is slightly different to
invoke from command mode. One simply hits the / key in command mode and enters what they are
searching for, as an example let us say I am searching for the expression foo:

/£foo

That is it, to illustrate a slightly different expression, let us say I am looking for foo bar:

/foo bar

6.1.6.1 Additional Navigation Commands

Searching and scrolling are not the only ways to navigate a vi buffer. Following is a list of succinct
navigation commands available for vi:

Move to beginning of line.
Move to end of line.
Back up one word.
Move forward one word.
Move to the bottom of the buffer.
Move to the top line on the screen.
Move to the last line on the screen.
Move the cursor to the middle of the screen.
Scan for next search match but opposite direction.
Scan for next search match in the same direction.

BzZzZCITIQE O »o

61

Chapter 6 Editing

6.1.7 A Sample Session

Now that we have covered the basics, let us run a sample session using a couple of the items discussed so
far. First, we open an empty file into the buffer from the command line like so:

vi foo.txt

Next we switch to edit mode and enter two lines separated by an empty line, remember our buffer is
empty so we hit the i key to insert before cursor and enter some text:

This is some text

there we skipped a line

Now hit the ESC key to switch back into command mode.

Now that we are in command mode, let us save the file. First, hit the : key, the cursor should be sitting in
the lower left corner right after a prompt. At the : prompt enter w and hit the ENTER or RETURN key.
The file has just been saved. There should have been a message to that effect, some vi editors will also
tell you the name, how many lines and the size of the file as well.

It is time to navigate, the cursor should be sitting wherever it was when the file was saved. Try using the
arrow keys to move around a bit. If they do not work (or you are just plain curious) try out the hjkl keys
to see how they work.

Finally, let us do two more things, first, navigate up to the first line and then to the first character. Try out
some of the other command mode navigation keys on that line, hit the following keys a couple of times:

o < O »n

The cursor should hop to the end of line, back to the beginning and then to the end again.

Next, search for an expression by hitting the / key and an expression like so:
/we

The cursor should jump to the first occurrence of we.

Now save the file and exit using write and quit:

1wq

62

Chapter 6 Editing

6.2 Configuring vi

The standard editor supplied with NetBSD is, needless to say, vi, the most loved and hated editor in the
world. If you don’t use vi, skip this section, otherwise read it before installing other versions of vi.
NetBSD’s vi (nvi) was written by Keith Bostic of UCB to have a freely redistributable version of this
editor and has many powerful extensions worth learning while being still very compatible with the
original vi. Nvi has become the standard version of vi for BSD.

Amongst the most interesting extensions are:

- Extended regular expressions (egrep style), enabled with option extended.
» Tag stacks.

« Infinite undo (to undo, press u; to continue undoing, press .).

« Incremental search, enabled with the option searchincr.

+ Left-right scrolling of lines, enabled with the option left right; the number of columns to scroll is
defined by the sidescroll option.

« Command line history editing, enabled with the option cedit.
« Filename completion, enabled by the £ilec option.
« Backgrounded screens and displays.

+ Split screen editing.

6.2.1 Extensions to .exrc

The following example shows a . exrc file with some extended options enabled.

set showmode ruler
set filec="][
set cedit="[

The first line enables the display of the cursor position (row and column) and of the current mode
(Command, Insert, Append) on the status line. The second line (where [is the ESC character) enables
filename completion with the ESC character. The third line enables command line history editing (also

€,

with the ESC character.) For example, writing “:”” and then pressing ESC opens a window with a list of
the previous commands which can be edited and executed (pressing Enter on a command executes it.)

6.2.2 Documentation
The misc installation set (misc.tgz) contains a lot of useful documentation on (n)vi and ex, and when

installed it is available in /usr/share/doc directory. For example:

« Edit: A tutorial - /usr/share/doc/usd/edit/edit. {ps.gz, txt}
« Ex Reference Manual - /usr/share/doc/reference/refl/ex/reference. {ps.gz,txt}

+ Vi man page - vi(l)

63

Chapter 6 Editing
+ An Introduction to Display Editing with Vi by William Joy and Mark Horton -
/usr/share/doc/usd/vi/vitut. {ps.gz, txt}

« Vi/Ex Reference Manual by Keith Bostic -

/usr/share/doc/reference/refl/vi/vi.{ps.gz,txt}
« Ex/Vi Quick Reference - /usr/share/doc/usd/vi/summary. {ps.gz, txt}

If you have never used vi, An Introduction to Display Editing with Vi by William Joy and Mark Horton is
a very good starting point.

If you want to learn more about vi and the nvi extensions you should read the Vi/Ex Reference Manual by
Keith Bostic which documents all the editor’s commands and options.

6.3 Using tags with vi

This topic is not directly related to NetBSD but it can be useful, for example, for examining the kernel
sources.

When you examine a set of sources in a tree of directories and subdirectories you can simplify your work
using the tag feature of vi. The method is the following:

1. cd to the base directory of the sources.
$ cd /path
2. Write the following commands:

S find . -name "*.[ch]" > filelist
$ cat filelist | xargs ctags

3. Add the following line to .exrc
set tags=/path/tags

(substitute the correct path instead of path.)

64

Chapter 7
The rc.d System

NetBSD uses individual scripts for controlling services, similar to what System V does, but without

runlevels. This chapter is an overview of the rc.d system and its configuration.

7.1 Basics

The system startup files reside in the /et c directory. They are:

/etc/rc
/etc/rc.conf
/etc/rc.d/*
/etc/rc.local
/etc/rc.shutdown
/etc/rc.subr
/etc/defaults/~*

/etc/rc.conf.d/«

First, an overview of the control and support scripts (also documented in rc(8)).

After the kernel has initialized all devices at startup, it starts init(8), which in turn runs /etc/rc.

/etc/rc sorts the scripts in /etc/rc.d using rcorder(8) and then runs them in that order. See the
rcorder(8) man page for details of how the order of rc.d scripts is determined.

/etc/rc.subr contains common functions used by /etc/rc and various rc.d scripts.

When shutting down the system with shutdown(8), /etc/rc.shutdown is run, which runs the scripts
in /etc/rc.d in reverse order (as defined by rcorder(8)). Note that if you shut down the system using
the halt(8) command, these scripts will not be run.

Additional scripts outside of the rc. d directory:

/etc/rc.local is almost the last script called at boot up. This script can be edited by the
administrator to start local daemons that don’t fit the rc.d model.

rc.d scripts are controlled by a central configuration file, /etc/rc.conf, which loads its default settings

from /etc/defaults/rc.conf. If you want to change a default setting, do not edit
/etc/defaults/rc.conf; instead, apply the setting in /etc/rc.conf. This will override the default.

It is a good idea to read the rc.conf(5) man page to learn about the services that are available to you.

The following example shows how to enable the SSH daemon, which is disabled by default:

65

Chapter 7 The rc.d System

cd /etc; grep ssh defaults/rc.conf
sshd=NO sshd_flags=""
echo "sshd=YES" >> rc.conf

Now sshd(8) will be started automatically at system startup. The next section describes how to start and
stop services at any time.

Last but not least, files can be created in the /etc/rc.conf.d/ directory to override the behavior of a
given rc.d script without editing the script itself.

7.2 The rc.d Scripts

The actual scripts that control services are in /etc/rc.d. These scripts are automatically run at boot
time, but they can be called manually if necessary. The following example shows how to start the SSH
daemon that we enabled in the previous section:

/etc/rc.d/sshd start
Starting sshd.

Later, if you wish to stop the SSH daemon, run the following command:

/etc/rc.d/sshd stop
Stopping sshd.
Waiting for PIDS: 123.

The rc.d scripts take one of the following arguments:

+ start
« stop
« restart
+ status

Some scripts may support other arguments (e.g., “reload”), but every script will support at least the above
commands.

As an example, after adding a new record to a named(8) database, the daemon can be told to reload its
configuration files with the following command:

/J/etc/rc.d/named reload
Reloading named config files.

Note that all of the commands discussed above will only take action if the particular service is enabled in
/etc/rc.conf. It is possible to bypass this requirement by prepending “one” to the command, as in:

/etc/rc.d/httpd onestart
Starting httpd.

The above command will allow you to start the httpd(8) service one time. To stop a service that has been
started in this manner, pass “onestop” to the script.

66

Chapter 7 The rc.d System

7.2.1 Packages installing rc.d scripts

Several packages install rc.d scripts. By default package rc.d scripts can be found in
/usr/pkg/share/examples/rc.d and need to be manually copied to /etc/rc.d in order to be
used. Setting PKG_RCD_SCRIPTS=yes environment variable prior installing packages enable automatic
copying rc.d scripts to /etc/rc.d.

7.3 The Role of rcorder and rc.d Scripts

The startup system of every Unix system determines, in one way or another, the order in which services
are started. On some Unix systems this is done by numbering the files and/or putting them in separate run
level directories. Solaris relies on wildcards like /etc/rc[23] .d/S* being sorted numerically when
expanded. Some simply put all the commands that should be started into a single monolithic script (this
is the traditional BSD method, and is what NetBSD did before the rc.d system). On modern NetBSD this
is done by the rc.d scripts and their contents. Please note that NetBSD does not use multiple runlevels.

At the beginning of each rc.d script there is a series of commented out lines that have one of the
following items in them:

« REQUIRE
- PROVIDE
« BEFORE

« KEYWORD

These describe the dependencies of that particular script and allow rcorder to easily work either “up” or
“down” as the situation requires. As an example, here is the ordering information contained in
/etc/rc.d/nfsd:

PROVIDE: nfsd
REQUIRE: rpcbind mountd

Here we can see that this script provides the “nfsd” service and that it requires “rpcbind” and “mountd”
to be running first. The rcorder(8) utility is used at system startup time to read through all the rc.d scripts
and determine the order in which they should be run.

7.4 Additional Reading

Luke Mewburn, one of the principal designers of the rc.d system, gave a presentation on the system at
USENIX 2001. It is available in PDF (http://www.mewburn.net/luke/papers/rc.d.pdf) format.

67

Chapter 8
Console drivers

8.1 wscons

Wscons is NetBSD’s platform-independent workstation console driver. It handles complete abstraction
of keyboards and mice. This means that you can plug in several keyboards or mice and they will be
multiplexed onto a single terminal, but also that it can multiplex several virtual terminals onto one
physical terminal.

Wscons support is enabled by default on most architectures. This can be done manually by adding
wscons=YES to your /etc/rc.conf. Then configure the desired number of virtual consoles as
described in Section 8.1.1.1 and start wscons by entering sh /etc/rc.d/wscons start followed by
sh /etc/rc.d/ttys restart. You can now switch virtual consoles by pressing Ctrl+Alt+Fn or
similar, depending on the platform.

Wscons comprises three subsystems: wsdisplay, wskbd and wsmouse. These subsystems handle
abstraction for all display, keyboard and mouse devices respectively. The following sections discuss the
configuration of wscons per subsystem.

8.1.1 wsdisplay

This section will explain how to configure display and screen-related options.

8.1.1.1 Virtual consoles

The number of pre-allocated virtual console is controlled by the following kernel configuration option

options WSDISPLAY_ DEFAULTSCREENS=4

Other consoles can be added by enabling the relevant lines in the /etc/wscons. conf file: the comment
mark (#) must be removed from the lines beginning with screen x. In the following example a fifth
console is added to the four pre-allocated ones:

screens to create

idx screen emul
#screen 0 - vt100
screen 1 - vt100
screen 2 - vt100
screen 3 - vt100
screen 4 - -

#screen 4 80x25bf vt100
#screen 5 80x50 vt100

68

Chapter 8 Console drivers

The /etc/rc.d/wscons script transforms each of the non commented lines in a call to the wsconscfg
command: the columns become the parameters of the call. The idx column becomes the index
parameter, the screen column becomes the -t type parameter (which defines the type of screen: rows
and columns, number of colors, ...) and the emul column becomes the —e emul parameter, which defines
the emulation. For example:

screen 3 - vt100
becomes a call to:
wsconscfg —e vt100 3

Please note that it is possible to have a (harmless) conflict between the consoles pre-allocated by the
kernel and the consoles allocated at boot time through /etc/wscons. conf. If during boot the system
tries to allocate an already allocated screen, the following message will be displayed:

wsconscfg: WSDISPLAYIO_ADDSCREEN: Device busy

The solution is to comment out the offending lines in /etc/wscons.conf.

Note that while it is possible to delete a screen and add it with different settings, it is, technically
speaking, not possible to actually modify the settings of a screen.

screen 0 cannot be deleted if used as system console. This implies that the setting of screen 0 cannot
be changed in a running system, if used as system console.

The virtual console must also be active in /etc/ttys, so that NetBSD runs the getty(8) program to ask
for login. For example:

console "/usr/libexec/getty Pc" pc3 off secure
ttyEO "/usr/libexec/getty Pc" vt220 on secure
ttyEl "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 off secure

When starting up the X server, it will look for a virtual console with no getty(8) program running, e.g.
one console should left as "off" in /etc/ttys. The line

ttyE3 "/usr/libexec/getty Pc" vt220 off secure

of /etc/ttys is used by the X server for this purpose. To use a screen different from number 4, a
parameter of the form vtn must be passed to the X server, where n is the number of the function key used
to activate the screen for X.

For example, screen 7 could be enabled in /etc/wscons.conf and X could be started with vt 8. If
you use xdm you must edit /etc/X11/xdm/Xservers. For example:

:0 local /usr/X11R7/bin/X +kb dpms -bpp 16 dpms vt8

8.1.1.1.1 Getting rid of the message WsDISPLAYIO ADDSCREEN: Device busy

This error message usually occurs when wsconscfg tries to add a screen which already exists. This
occurs if you have a screen 0 line in your /etc/wscons. conf file, because the kernel always

69

Chapter 8 Console drivers

allocates a screen 0 as the console device. The error message is harmless in this case, and you can get rid
of it by deleting (or commenting out) the screen 0 line.

8.1.1.2 50 lines text mode with wscons

This mode is activated in the /etc/wscons. conf. The following line must be uncommented:
font ibm - 8 ibm /usr/share/pcvt/fonts/vt2201.808

Then the following lines must be modified:

80x50 vt100
80x50 vt100
80x50 vt100
screen 80x50 vt100

fscreen 0
1
2
3
screen 4 80x50 vt100
5
6
9

sCcreen
screen

80x50 vt100
80x50 vt100
80x50 vt100

screen
screen
Screen

This configuration enables eight screens, which can be accessed with the key combination Ctrl-Alt-Fn
(where n varies from 1 to 8); the corresponding devices are ttyEQ..ttyE7. To enable them and get a login
prompt, /etc/ttys must be modified:

ttyEO "/usr/libexec/getty Pc" vt220 on secure
ttyEl "/usr/libexec/getty Pc" vt220 on secure
ttyE2 "/usr/libexec/getty Pc" vt220 on secure
ttyE3 "/usr/libexec/getty Pc" vt220 on secure
ttyE4 "/usr/libexec/getty Pc" vt220 on secure
ttyES "/usr/libexec/getty Pc" vt220 on secure
ttyE6 "/usr/libexec/getty Pc" vt220 on secure
ttyE7 "/usr/libexec/getty Pc" vt220 on secure

screen 0 as system console can be set to another screen type at boot time on VGA displays. This is a
kernel configuration option. If a non-80x25 setting is selected, it must be made sure that a usable font is
compiled into the kernel, which would be an 8x8 one for 80x50.

There is a problem with many ATI graphics cards which don’t implement the standard VGA font
switching logics: These need another kernel option to make a nonstandard console font work.

An example set of kernel configuration options might be:

options VGA_CONSOLE_SCREENTYPE="\"80x50\""
options VGA_CONSOLE_ATI_BROKEN_FONTSEL
options FONT_VT220L8x8

8.1.1.3 Enabling framebuffer console

On many architectures, there is only one type of screen mode: a graphical framebuffer mode. On
machines with VGA graphics cards, there is a second mode: textmode. This is an optimized mode

70

Chapter 8 Console drivers

specially made for displaying text. Hence, this is the default console mode for GENERIC kernels on
architectures where the graphics card is typically a VGA card (1386, amd64).

However, you can enable a framebuffer on machines with VGA cards that support the VESA BIOS
extension (VBE).

VESA framebuffer mode is configured during boot(8) using the vesa command.

8.1.1.4 Enabling scrollback on the console

You can enable scrolling back on wscons consoles by compiling the WSDISPLAY_SCROLLSUPPORT
option into your kernel. Make sure you don’t have option VGA_RASTERCONSOLE enabled at the same
time though! See Chapter 34 for instructions on building a kernel.

When you have a kernel with options WSDISPLAY_SCROLLSUPPORT running, you can scroll up on the
console by pressing LEFT SHIFT plus PAGE UP/DOWN. Please note that this may not work on your
system console (ttyE0)!

8.1.1.5 Wscons and colors

8.1.1.5.1 Changing the color of kernel messages

It is possible to change the foreground and background color of kernel messages by setting the following
options in kernel config files:

options WS_KERNEL_FG=WSCOL_xxx
options WS_KERNEL_BG=WSCOL_xxXX
The WSCOL_xxx color constants are defined in src/sys/dev/wscons/wsdisplayvar.h.

You can easily customize many aspects of your display appearance: the colors used to print normal
messages, the colors used to print kernel messages and the color used to draw a border around the screen.

All of these details can be changed either from kernel options or through the wsconsctl(8) utility; the
latter may be preferable if you don’t want to compile your own kernel, as the default options in GENERIC
are suitable to get this tip working.

The following options can be set through wsconsctl(8):

« border: The color of the screen border. Its respective kernel option is WSDISPLAY_BORDER_COLOR.

+ msg.default.attrs: The attributes used to print normal console messages. Its respective kernel
options are WS_DEFAULT_COLATTR and WS_DEFAULT_MONOATTR (the former is used in color
displays, while the latter is used in monochrome displays).

+ msg.default.bg: The background color used to print normal console messages. Its respective kernel
option is WS_DEFAULT_BG.

+ msg.default. fqg: The foreground color used to print normal console messages. Its respective kernel
option is WS_DEFAULT_FG.

71

Chapter 8 Console drivers

+ msg.kernel.attrs: The attributes used to print kernel messages and warnings. Its respective kernel
options are WS_KERNEL_COLATTR and WS_KERNEL_MONOATTR (the former is used in color displays,
while the latter is used in monochrome displays).

« msg.kernel.bg: The background color used to print kernel messages and warnings. Its respective
kernel option is WS_KERNEL_BG.

+ msg.kernel. £g: The foreground color used to print kernel messages and warnings. Its respective
kernel option is WS_KERNEL_FG.

The values accepted as colors are: black, red, green, brown, blue, magenta, cyan and white. The attributes
are a comma separated list of one or more flags, which can be: reverse, hilit, blink and/or underline.

For example, to emulate the look of one of those old Amstrad machines:

wsconsctl -d -w border=blue msg.default.bg=blue msg.default.fg=white msg.default.attrs=hili
Or, to make your kernel messages appear red:

wsconsctl —-d -w msg.kernel.fg=red

Note that, in older versions of NetBSD, only a subset of this functionality is available; more specifically,
you can only change the kernel colors by changing kernel options, as explained above. Also note that not
all drivers support these features, so you may not get correct results on all architectures.

8.1.1.5.2 Getting applications to use colors on the console

NetBSD uses the terminfo database to tell applications what the current terminal’s capabilities are. For
example, some terminals don’t support colors, some don’t support underlining (PC VGA terminals don’t,
for example) etc. The TERM environment variable tells the terminfo library the type of terminal. It then
refers to its database for the options.

The default setting for TERM can be inspected by typing echo $TERM on the terminal of interest.
Usually this is something like vt220. This terminal type doesn’t support colors. On a typical PC console
with 25 lines, you can change this value to wsvt25 instead, to get colors. This is done in the C shell (csh)
by entering:

setenv TERM wsvt25
In a Bourne-compatible shell (sh, ksh), you can enter:

export TERM=wsvt25

If this does not work for you, you can try the ansi terminal type, which supports ANSI color codes.
However, other functionality may be missing with this terminal type. You can have a look at the file
/usr/share/misc/terminfo to see if you can find a useful match for your console type.

8.1.1.6 Loading alternate fonts

There are several fonts in /usr/share/wscons/fonts that can be loaded as console fonts. This can be
done with the wsfontload(8) command, for example: wsfontload -N ibm —-h 8 -e ibm

72

Chapter 8 Console drivers

/usr/share/wscons/fonts/vt2201.808. This command loads the IBM-encoded (-e ibm) font in
the file v£2201.808 which has a height of eight pixels (-h 8). Name it ibm for later reference (-N
ibm).

To actually display the font on the console, use the command wsconsctl -dw font=ibm.

If you want to edit a font, you can use the old pcvt utils that are available in the sysutils/pcvt-utils
package.

8.1.2 wskbd

8.1.2.1 Keyboard mappings

Wscons also allows setting the keymap to map the keys on various national keyboards to the right
characters. E.g. to set the keymap for an Italian keymap, run:

wsconsctl -k -w encoding=it
encoding —-> it

This setting will last until the next reboot. To make it permanent, add a encoding line to
/etc/wscons.conf: it will be executed automatically the next time you reboot.

cp /etc/wscons.conf /etc/wscons.conf.orig
echo encoding it >>/etc/wscons.conf

Please be careful and type two > characters. If you type only one >, you will overwrite the file instead of
adding a line. But that’s why we always make backup files before touching critical files!

A full list of keyboard mappings and variants can be found in wskbd(4).

You can change the compiled in kernel default by adding options PCKBD_LAYOUT=KB_encoding
where encoding is an uppercase entry from the list above (e.g.: PCKBD_LAYOUT=KB_FR). Variants can be
bitwise or’d in (e.g.: PCKBD_LAYOUT=KB_US |KB_SWAPCTRLCAPS).

Configuring the keyboard layout under X is described elsewhere
(http://www.NetBSD.org/docs/x/#x-keyboard-maps).

8.1.2.1.1 Hacking wscons to add a keymap

If your favourite keymap is not supported, you can start digging in
src/sys/dev/wscons/wsksymdef.h and src/sys/dev/pckbport /wskbdmap_mfii.c to make
your own. Be sure to send-pr (http://www.NetBSD.org/support/send-pr.html#submitting) a
change-request PR with your work, so others can make use of it!

You can test your keymap by using wsconsctl instead of directly hacking the keymaps into the keyboard
mapping file. For example, to say keycode 51 without any modifiers should map to a comma, with shift it
should map to a question mark, with alt it should map to a semicolon and with both alt and shift it should
map to colon, issue the following command:

wsconsctl -w "map += keycode 5l=comma question semicolon colon"

73

Chapter 8 Console drivers

8.1.2.2 Changing the keyboard repeat speed

Keyboard repeat speed can be tuned using the wsconsctl(8) utility. There are two variables of interest:
repeat .dell, which specifies the delay before character repetition starts, and repeat . deln, which
sets the delay between each character repetition (once started).

Let’s see an example, assuming you want to accelerate keyboard speed. You could do, from the
command line:

wsconsctl —-w repeat.dell=300
wsconsctl -w repeat.deln=40

Or, if you want this to happen automatically every time you boot up the system, you could add the
following lines to /etc/wscons.conf:

setvar repeat.dell=300
setvar repeat.deln=40

8.1.3 wsmouse

8.1.3.1 Serial mouse support

The wsmouse device (part of wscons) does not directly support serial mice. The moused(8) daemon is
provided to read serial mouse data, convert it into wsmouse events and inject them in wscons’ event
queue, so the mouse can be used through the abstraction layer provided by wsmouse.

A typical use can be: moused -p /dev/tty00. This will try to determine the type of mouse connected
to the first serial port and start reading its data. The moused(8) man page contains more examples.

8.1.3.2 Cut&paste on the console with wsmoused

It is possible to use the mouse on the wscons console to mark (cut) text with one mouse button, and
insert (paste) it again with another button.

To do this, enable "wsmoused" in /etc/rc.conf, and start it:

echo wsmoused=yes >>/etc/rc.conf
sh /etc/rc.d/wsmoused start

After that you can use the mouse to mark text with the left mouse button, and paste it with the right one.
To tune the behaviour of wsmoused(8) see its manpage, which also describes the format of the
wsmoused.conf(5) config file, an example of which can be found in

/usr/share/examples/wsmoused

74

Chapter 9
The X Window System

9.1 What is X11 / Xorg?

NetBSD uses the X Window System to provide a graphical interface.

Please note that the X Window System is a rather bare bones framework. It acts as a base for modern
desktop environments like MATE, or Xfce, but they are not part of the X Window System. NetBSD ships
with the X Window System, but it does not include these desktop environments; they must be added via
pkgsre.

When you start using X you’ll find many new terms which you may find confusing at first. The basic
elements are:

+ An X server running on top of the hardware. The X server provides a standard way to display graphics
(including fonts for text display) and get mouse/keyboard/other input. On most NetBSD ports, the
Xorg(1) display server is used. Other X servers included with NetBSD include Xnest(1), which runs
an X server inside another X server as a window, and Xvfb(1), which runs an off-screen X server, and
is typically used to provide a full remote-only desktop with x11/x11vnc.

» X clients. These are the programs you directly interact with. They run on top of the X server. A web
browser like Firefox is an example of an X client. X is network-transparent, which means that you can
run X clients on one machine, and the X server (i.e., the display, with video hardware) on another
machine. The X client picks a server to use as a display based on the DISPLAY environment variable,
typically : 0 for the first server, and : 1 for the second.

+ A window manager running on top of the X server. The window manager is a special X client that is
allowed to control the placement of windows. It can also “decorate” windows with standard “widgets”
(usually these provide actions like window motion, resizing, iconifying, window killing, etc.).
ctwm(1) is NetBSD’s default window manager.

« A desktop environment such as MATE, or Xfce. These are suites of integrated software designed to
give you a well-defined range of software and a more or less common interface to each program.
These typically include a window manager, file manager, web browser, email client, multimedia
player, text editor, address book, help browser, etc. As you may have guessed, a desktop environment
is not needed to use X, but many users will want to install one.

« A compositor or compositing manager runs on the X server and redirects rendering to an off-screen
buffer, typically using the GPU (Graphics Processing Unit) hardware for final rendering. It can
provide additional eye-candy and often VSync (vertical sync). Some window managers, typically
those included with large desktop environments, include their own compositing managers. xcompmgr
and x11/picom are external compositing managers.

The X Window System is included with NetBSD as separate distribution sets, see Section 3.10. It can be
added to an installed system with sysinst(8).

75

Chapter 9 The X Window System

On NetBSD, X11 lives under the filesystem hierarchy /usr/x11R7. Therefore, to use X,
/usr/X11R7/bin must be in your shell’s PATH. See ~/ .profile.

9.2 Configuration

In most cases, you will be able to start using X without any configuration at all, and startx will work just
fine.

In rare cases, however, configuration of the X server is required. This configuration file is located at
/etc/X11/xorg.conf. The structure of the configuration file is described formally in xorg.conf(5).

To generate an initial configuration file for your X server, run the command
X —configure

This command should create a configuration file and place it in your home directory. To test the
generated configuration file, run, e.g.,

X —config ~/xorg.conf.new

If this succeeds, you should see a crosshatched background and a cursor in the shape of an X. Try
moving the cursor around to verify that the mouse is functional. You can then switch to another virtual
terminal (Ctrl-Alt-F#) or log in remotely and kill the X process.

If the above test was successful, move the file into place as /etc/X11/xorg.conf and you are ready to
go.

9.3 The keyboard

Even if you have already configured your keyboard for wscons (see Section 8.1), you need to configure it
for X as well, at least if you want to use a non-US layout.

An easy solution is to use setxkbmap(1) .

Here is an example that shows how to use a Hebrew keyboard, with Ctrl-Alt used to switch layouts, and
with the position of the Escape and Caps Lock keys swapped as an additional option:

setxkbmap -option grp:alt_shift_toggle us,il \
—-option caps:swapescape -option terminate:ctrl_alt_bksp

If you wish to change the repeat rate of your keyboard, you can set it with the xset(1) command, which
takes two arguments: delay and rate, respectively. The following example sets the initial delay to 200
milliseconds and the repeat rate to 30 per second:

$ xset r 200 30

You can also run this command in your .xinitrc or .xsession file. See below (Section 9.6) for more
information.

76

Chapter 9 The X Window System

9.4 The monitor

If X does not run at the resolution you think it should, first run xrandr and see if the resolution you want
is listed. If your preferred resolution is listed in that command’s output, you can change resolutions with,

e.g.,

$ xrandr -s 1680x1050

xrandr can also be used to enable output to hot-plugged monitors.

Managing outputs can be done graphically with the pkgsrc package x11/arandr.

9.5 Starting X

You can start X with the following command:
$ startx

If your basic X server configuration is correct, you are left in the X environment with the default window
manager (ctwm). If you want a more advanced window manager or desktop environment, many are
available in pkgsrc. See Section 9.7 for information about adding and changing window managers.

9.6 Customizing X

One of the first things you will want to do is to change the programs that run when X is first started. The
easiest way to do this is to copy the default . xinitrc file to your home directory and modify it, or
create a simple new one from scratch. For example:

$ cp /etc/X1l/xinit/xinitrc ~/.xinitrc
$ chmod u+w ~/.xinitrc

$ vi ~/.xinitrc

If you use xdm(1), ~/ .xsession is used in place of ~/.xinitrc.

The following example shows how to start the window manager (ctwm) and open an instance of the
xterm and xterm programs. The screen background color is set to “bisque4”, which is defined in
/usr/X11R7/1ib/X11/rgb.txt.

start some programs - a basic clcok

xclock —-geometry 50x50-1-1 &

change the color of the "root window" ("desktop background")
xsetroot —-solid bisqued &

spawn a terminal

uxterm —-geometry 80x34-1+1 -bg OldLace &

exec ctwm -W # no &’ here

With this type of setup, to quit X you must exit the window manager, which is usually done by selecting
"exit" from its menu.

77

Chapter 9 The X Window System

The above example is very simple, but illustrates the basics of controlling the clients that are run when X
is started. You can run any number of commands from your . xinitrc, including basic X configuration
commands like xset b off to turn off the bell.

9.7 Other window managers or desktop environments

If you don’t like ctwm, which is a very simple window manager, you can install another window
manager or a desktop environment from pkgsrc. The following example uses the Openbox window
manager, but there are many others available in pkgsrc/wm.

Openbox can be installed via binary packages or compiled with pkgsrc. As always, assuming a properly
set PKG_PATH, the binary package method is:
pkgin in openbox

To build it with pkgsrc, run:

cd /usr/pkgsrc/wm/openbox
make install

Openbox is now installed; to start it you must modify your .xinitrc file: substitute the line which calls
ctwm with a line which calls openbox. For example:

start some useful programs
xclock —-geometry 50x50-1-1 &
start window manager:

exec openbox # no &’ here

The startx command will start the X11 session with Openbox. As configured in the example .xinitrc
file above, choosing “Log Out” from Openbox’s menu will end the X11 session.

Installing a desktop environment is almost as easy. The following example shows how to use the Xfce
desktop environment.

pkgin in xfce4

Depending on your requirements, you may wish to enable dbus as a system-wide service. The following
example demonstates how. (If you don’t enable dbus to run as a system-wide service, startxfce4 will
start dbus under your user account during initialization.)

cp /usr/pkg/share/examples/rc.d/dbus /etc/rc.d
echo dbus=YES >> /etc/rc.conf
service dbus start

If you wish to be able to control your system’s power state from within the desktop, the account you
intend to run X under must also be a member of the “operator” group (see Section 5.6).

After running the above commands, edit your .xinitrc as above and change “openbox” (or “ctwm”) to
“startxfce4”. The next time you run startx the Xfce desktop environment will be started.

78

Chapter 9 The X Window System

9.8 Graphical login with xdm

If you always use X and the first thing you do after you log in is run startx, you can set up a graphical
login to do this automatically. It is very easy:

1. Create the . xsession file in your home directory. This file is similar to . xinitrc and can, in fact,
be a link to it.

$ ln -s .xinitrc ~/.xsession
2. Modify /etc/rc.conf, adding the following line:
xdm=YES # x11 display manager

3. Start xdm(1) (or reboot your system, as this will be done automatically from now on):

service xdm start

The configuration files for xdm are in the /etc/x11/xdm directory. The Xservers file specifies the
virtual console that X is started on. It defaults to “vt05”, which is the console you reach via
“Ctrl+Alt+F5”. If you want to use a different virtual console, change vt05 as desired. In order to avoid
keyboard contention between getty and xdm, be sure to start xdm on a virtual terminal where getty is
disabled. For example, if in Xservers you have:

:0 local /usr/X11R7/bin/X :0 vt04
then in /etc/ttys you should have
ttyE3 "/usr/libexec/getty Pc" wsvt25 off secure

(Please note that vt04 corresponds to ttyE3; in /etc/x11/xdm/Xservers, numbering starts at 1, but in
/etc/ttys, numbering starts at 0.)

If you are using xdm to start various modern desktop environments, such as Xfce or MATE, you will
need to override its default permitted authorization mechanisms, by adding the following to
/etc/X11/xdm/xdm-config

DisplayManager+xauthName: MIT-MAGIC-COOKIE-1

If you want to change the look of your xdm login screen, you can modify the xdm configuration file. For
example, to change the background color you can add the following line to the xsetup_0 file:

xsetroot -solid SeaGreen

9.9 Using multiple or remote X servers

This is intended as a simple example of how to use multiple X servers. For illustration purposes, we’ll
simply use Xnest(1), which creates a new X server : 1 as a window on the existing server : 0:

$ Xnest :1 &

It’s then possible to run programs on the second server, or even a different window manager:

$ DISPLAY=:1 uxterm &

79

Chapter 9 The X Window System

$ DISPLAY=:1 ctwm &

Using X11 forwarding, programs can run on a remote machine while displaying on the local machine.
This must typically be enabled in /etc/ssh/sshd_config:

X1l1lForwarding yes
Log in with ssh(1) and run X programs the normal way:

$ ssh -X remote.machine.example.com

$ uxterm &

On a completely headless system (with no monitor), Xvfb(1) (X virtual framebuffer) can be used in a
similar manner. The fully virtual screen of the X server can be exported over the network with
x11/x1lvnc:

$ Xvfb :1 &
$ DISPLAY=:1 ctwm &
$ xllvnc -display :1 -localhost -passwdfile /path/to/password &

Notice we use the ~1ocalhost option. In theory this stops remote connections, however, in practice
we’re using a SSH tunnel to forward the VNC port, adding an extra layer of security. To connect to the
headless machine:

$ ssh -L 5900:hostname:5900 hostname
$ vncviewer localhost &

9.10 Further resources

« An X Window System Tutorial (https://www.youtube.com/playlist?list=PLA8E036608C60B7ES) is a
video series that attempts to explain basic concepts of the X Window System, including the role of the
window manager.

« X Window System User’s Guide for X11R3 and R4 (PDF
(https://ia802609.us.archive.org/29/items/xwindowsystem03quermiss/xwindowsystem03quermiss.pdf),
Web (https://www.oreilly.com/library/view/x-window-system/9780937175149/)) by Valerie Quercia
and Tim O’Reilley is a classic book describing some X features that is now available to read for free
online.

80

Chapter 10
Audio

10.1 Configuring the default audio device

audiocfg(1) can be used to list, test and set default audio devices.

All available audio devices can be listed with audiocfg list:

$ audiocfg list

0: [+x] audio0 @ hdafg0: Realtek ALC292
playback: 2ch, 48000Hz
record: 2ch, 48000Hz
(PR) slinear_le 16/16, 2ch, { 32000, 44100, 48000, 88200, 96000, 192000 }
(PR) slinear_le 20/32, 2ch, { 32000, 44100, 48000, 88200, 96000, 192000 }
(PR) slinear_le 24/32, 2ch, { 32000, 44100, 48000, 88200, 96000, 192000 }
() ac3 16/16, 2ch, { 32000, 44100, 48000, 88200, 96000, 192000 }

1: [] audiol @ uaudioO: USB audio
playback: 2ch, 48000Hz
record: lch, 48000Hz

(P-) slinear_le 16/16, 2ch, { 48000, 44100 }
(-R) slinear_le 16/16, 1lch, { 48000, 44100 }

The asterisk next to the Realtek ALC292 device indicates it is currently the default device, so if any
application writes or reads to /dev/audio it will play or record from it. It is also available as
/dev/audio0, and for mixer commands, /dev/mixer0.

The other device, USB audio, is a secondary device that has been plugged in. Since it isn’t the default, it
is only used if specifically selected in an application. It is available as /dev/audiol, and for mixer
commands, /dev/mixerl.

The playback: and record: rows indicate the currently selected hardware audio format. Below this, the
other supported formats are listed. Some devices set the playback and recording formats separately,
while others set both at the same time. This is indicated by PR.

audiocfg test index can be used to test playback, and plays a tone of 2 seconds for each channel of the
index device:

$ audiocfg test 0

0: [+x] audio0 @ hdafg0: Realtek ALC292
testing channel 0... done
testing channel 1... done

If more than one audio device is available, audiocfg default index can be used to change the default
one. This persists between reboots. Please note that unlike other audiocfg(1) commands, audiocfg
default needs to be run as root.

81

Chapter 10 Audio

10.2 Configuring the mixer and volume

In NetBSD, mixerctl(1) is used to adjust audio mixing, e.g. volume for recording and playback, and the
sources and sinks currently in use.

Set the current playback volume:
$ mixerctl -w outputs.master=50
List the available controls and settings:

$ mixerctl -av

outputs.master=255, 255 volume

inputs.dac=255,255 volume

outputs.auto=255,255 volume delta=13
outputs.headphones=0,0 volume delta=13
outputs.hdmi=255,255 volume delta=13
outputs.select=headphones [auto headphones hdmi]

Secondary devices can also be configured using mixerctl(1). For example, if you’ve just plugged in an
USB audio device, it may have attached as /dev/audiol and /dev/mixerl - this is visible using
audiocfg(1). You would therefore configure it with mixerctl -d /dev/mixerl.

10.2.1 Setting default mixer settings on boot

Default mixer device settings can be applied on boot by setting mixerct1=YES in /etc/rc.conf, then
providing arguments in /etc/mixerctl.conf. For example, this /etc/mixerctl.conf sets the
playback volume and playback sink:

outputs.master=120,120
outputs.select=headphones

To automatically load and save the settings of mixer devices on boot and shutdown, you can specify each
device to save individually in /etc/rc.conf:

mixerctl=YES
mixerctl mixers="mixer(0 mixerl"

10.3 Pseudo audio devices

NetBSD’s pad(4) device allows feeding back data from an application using a virtual audio device. It can
be used to redirect playback elsewhere, or record an application’s playback.

/dev/padN devices produce a raw stream of audio in a fixed format when opened for reading. At the
time of opening, they also create a /dev/audioN device for an application to use for output. You can
observe the device creation happening with dmesg(8).

The following example records the output of a game, games/ jumpnbump, using the program
multimedia/ffmpeg4 for encoding the data from the pad device to a file and writing it back to the real
audio device simultaneously. Both are available from the NetBSD Packages Collection.

82

Chapter 10 Audio

$ ffmpegd4 —-f slé6le —ar 44100 -ac 2 -i /dev/pad0 \
-f wav output.wav -f oss /dev/audio
$ SDL_PATH_DSP=/dev/audiol jumpnbump

10.4 Recording and playback commands

NetBSD comes with a number of commands that allow users to play and record audio from scripts or the
command-line interface.

10.4.1 audioplay(1)

With this command you can play audio files in simple formats like ULAW and WAVE. For more
sophisticated needs you might want to install one of the many programs available in the package system
which let you play audio files in different formats (e.g. MP3, etc.)

10.4.2 audiorecord(1)

Allows recording audio from a microphone or other input to the same simple or raw formats that
audioplay(1) supports.

The following command records CD quality audio to a WAVE file from the default audio device.
Recording will stop when the process is terminated:

$ audiorecord -d /dev/audio -F wav —e linear -c 2 -P 16 -s 44100 recording.wav
Play the recording back (its format is inferred from the WAVE headers):

$ audioplay recording.wav

10.4.3 audiocti(1)

audioctl(1) is used to manually set some variables regarding audio I/O, like the frequencies for playing
and recording. This is useful when writing raw samples to /dev/sound without access to the full
audio(4) API, e.g. from a shell script, but otherwise is not used during regular operation.

10.5 MIDI support

NetBSD includes built-in MIDI support through the machine-independent midi(4) system. This includes
support for USB MIDI devices.

Access to MIDI devices is supported through raw access to the /dev/rmidiX devices, or through the
sequencer device, /dev/music.

Digital Audio Workstations and other software with support for NetBSD MIDI in the Packages
Collection include audio/lmms and audio/fluidsynth. Several MIDI programs are also included
with NetBSD:

83

Chapter 10 Audio

10.5.1 midirecord(1)

A program that allows recording MIDI events from a device to files in the Standard MIDI (SMF) format.
It can also be used to test a device and verify it works as expected with the -D and -V options.

10.5.2 midiplay(1)
A program that allows playing Standard MIDI and RMID files to the MIDI sequencer device.

10.6 Intel HD Audio devices

Since the 2010s, most x86 machines have hardware compliant with the Intel HD Audio specification.
These use NetBSD’s hdaudio(4) driver and require some special consideration.

10.6.1 Built-in and jacks: DACs/ADCs

For hdaudio(4) devices, the currently selected playback ports (or, e.g. internal speaker and headphone
jack on a laptop) are controlled by selecting a DAC/ADC. The available DACs and ADCs can be seen in

/var/run/dmesg.boot:

hdafg0 at hdaudiol: Realtek ALC292

hdafg0: DACOO 2ch: Speaker [Built-In], HP Out [Jack]
hdafg0: ADCO1 2ch: Mic In [Jack]

hdafg0: ADCO2 2ch: Mic In [Built-In]

Therefore, to use only the built-in mic for recording:

$ mixerctl -w record.source=ADC02

Use all available sources:

$ mixerctl -w record.source=ADCO01l,ADC02

Some laptops may need outputs.dacsel changed to only play audio from the headphone jack, others
have hardware speaker mute and there’s no need for this.

10.6.2 HDMI/DisplayPort audio

Currently, HDMI/DisplayPort output with hdaudio(4) is not enabled in the default kernel because it
interferes with default device selection. This can be changed by enabling these options in the kernel
configuration, and rebuilding. See Chapter 34 for more information.

options HDAUDIO_ENABLE_DISPLAYPORT
options HDAUDIO_ENABLE_HDMI

With other drivers (e.g. on ARM boards) this is not necessary.

84

Chapter 11
Power management

For power management, NetBSD supports sensor monitoring (including battery state, CPU temperature,
and so on), CPU frequency adjustment, low-power mode for devices, hardware poweroff, and sleep
(suspend-to-RAM) on some hardware.

Power management on NetBSD primarily takes the form of acpi(4) (Advanced Configuration and Power
Interface) support, although sensors are also supported on many other types of non-ACPI hardware.

11.1 Basic power management commands

11.1.1 Powering off or rebooting the system

A NetBSD system with ACPI support can be physically powered off by running the poweroff(8) and
reboot(8) commands, however, it is usually best to use shutdown(8) so the system shuts down with
appropriate warning and has time to properly stop any running applications and services.

Shut the system down immediately:
shutdown -p now
Reboot with a 10 minute warning to any users:

shutdown -r +10

11.1.2 Using ACPI sleep states (suspend and resume)

An ACPI system is always in one of any "sleep states":

SO

fully running

S1
power on suspend (CPU and hard disks are off)

S2

similar to S3, usually not implemented

S3

suspend-to-RAM ("sleep", most of the system is inactive to save power, but can quickly be brought
back up)

85

Chapter 11 Power management

S4

suspend-to-disk ("hibernate", not currently supported on NetBSD)

S5
powered off

The sleep state can be modified with sysctl(8), e.g. to suspend-to-RAM:
sysctl -w hw.acpi.sleep.state=3

The way the system wakes up is dependent on the hardware, and may include pressing the power button
or lifting the lid. If supported, the system can resume from a suspended state much quicker than a full
reboot.

If you’ve tested this and verified it works as expected, you may wish to trigger it automatically through a
powerd(8) event, such as closing the lid of a laptop.

11.1.3 Suspending and resuming individual devices

If your machine does not support full ACPI suspend and resume, it may still be possible to suspend and
resume individual devices to save power while they are inactive. This can be accomplished with drvctl(8).

For example, /var/run/dmesg.boot reports our hardware has a SD card reader, rtsx0.

rtsx0 at pcil dev 0 function 0: Realtek Semiconductor RTS5227 PCI-E Card Reader (rev.

rtsx0: interrupting at msid4 vec 0
sdmmcO at rtsx0

We can suspend it:

drvetl -S rtsx0

And we can also resume it:
drvetl -R rtsx0

If a specific device is failing to suspend or resume, this can also be used for debugging.

11.1.4 Adjusting CPU frequency at runtime

Many modern machines allow the CPU frequency to be dynamically adjusted. A higher frequency
provides better performance, but increased battery usage and generates more heat. On NetBSD, CPU
frequency can be adjusted at runtime with sysctl(8).

For example, this machine is currently running at 1400 MHz, but also supports a 600 MHz low-power

mode:

$ sysctl -a | grep freq
machdep.cpu.frequency.target = 1400

machdep.cpu. frequency.current = 1400
machdep.cpu. frequency.min = 600
machdep.cpu. frequency.max = 1400

86

0x01)

Chapter 11 Power management
machdep.cpu. frequency.available = 600 1400
We can enter the low power mode by setting the target frequency:
sysctl -w machdep.cpu.frequency.target=600

Many modern hardware supports an "automatic adjustment" frequency, usually this will be a reported
frequency that ends in 1. On systems without this functionality, sysutils/estd can be installed from
pkgsrc to perform automatic adjustment depending on load in software, although it will be less efficient
than hardware scaling.

11.1.5 Using IEEE 802.11 (Wi-Fi) power saving mode

Some IEEE 802.11 (Wi-Fi) networking devices support a low power mode, which can be enabled with
ifconfig(8):

ifconfig iwm0 powersave

You may notice an increase in reported latency from ping(8) and a decrease in performance. However, it
may improve your device’s battery life, as the radios in such devices can consume a lot of energy. It can
be disabled again with ifconfig:

ifconfig iwm0 -powersave

11.2 Sensors and monitoring

The primary command-line frontend to NetBSD’s sensor monitoring framework is envstat(8). Here is a
typical example of envstat output:

$ envstat
Current CritMax WarnMax WarnMin CritMin Unit
[acpiacad0l]

connected: FALSE
[acpibatO]
present: TRUE
design voltage: 11.100 v
voltage: 12.270 4
design cap: 23.200 Wh
last full cap: 16.940 Wh
charge: 16.770 5.000% 1.181% Wh (99.00%)
charge rate: N/A
discharge rate: N/A
charging: FALSE
charge state: NORMAL
[acpitz0]
temperature: 48.000 128.000

acpiacad0 is the machine’s AC adapter. It is not currently connected.

87

Chapter 11 Power management

acpibat0 is the machine’s battery, currently 99% full. At 5%, a warning will be printed to the console
and an event sent to powerd(8). At 1%, the system will shut down to prevent data loss from loss of power.

A CPU temperature sensor is also detected, acpitz0. It indicates that the CPU’s current temperature is
48 degrees Celsius, and the critical temperature is 128 degrees Celsius. If the critical temperature is
reached, the system will shut down to prevent damage to hardware. powerd(8) can be notified of changes
in temperature.

11.3 An introduction to powerd

powerd(8) is a daemon that allows the system to respond to power management events, such as the AC
adapter being unplugged, battery state changing, a laptop’s lid being closed, or a "sleep” button being
pressed.

As with other services, powerd can be enabled by editing /etc/rc.conf:

powerd=YES

And started with service(8):

service powerd start

powerd works by executing a named sh(1) script from the directory /etc/powerd/scripts whenever
a power event occurs. We can use commands we learned in previous sections of this chapter to our
advantage in the scripts.

11.3.1 Example: using powerd to suspend on lid close

Example 11-1. /etc/powerd/scripts/lid_switch

#!/bin/sh -

#

Generic script for 1lid switch events.
#

Arguments passed by powerd(8) :

#

device event

case "S${2}" in
pressed)
Lock the X11 display to prevent tampering
DISPLAY=:0 /usr/pkg/bin/xlock -mode blank &
Wait for 1 second
sleep 1
Suspend
/sbin/sysctl -w hw.acpi.sleep.state=3
exit O

rr

released)

88

Chapter 11 Power management

exit 0

*)
logger -p warning "${0}: unsupported event ${2} on device ${1}" >&l
exit 1

esac

11.3.2 Example: reducing CPU frequency when unplugged

Example 11-2. /etc/powerd/scripts/acadapter

#!/bin/sh -

#

Generic script for acadapter events.
#

Arguments passed by powerd(8):

#

device event

case "${2}" in
pressed)
logger -p info "${0}: Full performance mode" >&1

Disable power saving mode on all network interfaces.
for intf in $(/sbin/ifconfig -1); do

/sbin/ifconfig $intf -powersave >/dev/null 2>&l
done

Increase CPU frequency
/sbin/sysctl -w machdep.cpu.frequency.target=2300

exit 0

rr

released)
logger -p info "${0}: Power saving mode" >&l

Enable power saving mode on all network interfaces.
for intf in $(/sbin/ifconfig -1); do

/sbin/ifconfig $intf powersave >/dev/null 2>l
done

Reduce CPU frequency
/sbin/sysctl -w machdep.cpu.frequency.target=1400

exit 0

rr

*)

logger -p warning "${0}: unsupported event ${2} on device ${1}" >&l

89

Chapter 11 Power management
exit 1

rrs

esac

90

Chapter 12
Printing

This chapter describes a simple configuration for printing, using an HP Deskjet 690C printer connected
to the first parallel port and the Ipd printing system that comes with NetBSD. First, the system will be
configured to print text documents, and next the configuration will be extended to print PostScript
documents using the Ghostscript program (print/ghostscript). Please note that there are other,
alternative printing systems available from the packages collection
(http://www.NetBSD.org/docs/software/packages.html), like LPRng (print /LPRng) and the Common
Unix Printing System (CUPS) (print/cups) which are not covered here.

12.1 Enabling the printer daemon

After installation it is not yet possible to print, because the Ipd printer spooler daemon is not enabled. To
enable Ipd, one line in the /etc/rc.conf file must be changed from:

1pd=NO

to

1pd=YES

The change will come into effect at the next boot, but the daemon can be started manually now:
service lpd start

To check if Ipd is active, type the following command:

service 1lpd status

If you don’t see an entry for Ipd in the output of the previous command, the daemon is not active.

The lpd system is configured via /etc/printcap. Before configuring /etc/printcap itis a good
idea to make a printer test, to check if the physical connection between your computer and the printer is
working. The test sends out some data directly to the printer device. Assuming you use a printer
connected to the parallel port, this is /dev/1pt0; if you use an USB printer try /dev/ulpt0. Please
check the manpages of these devices (Ipt(4), ulpt(4)) for more information!

In our example we have a printer attached to the parallel port, so we run this:
lptest 70 5 > /dev/1lptO0

To see what the output should look like, try the same command without redirecting the output to the
printer:

lptest 70 5
IM#8%57 () x+,—./0123456789:; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]"_‘abcdef

91

Chapter 12 Printing

"$#8%8’ () x+,-./0123456789:; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]~_ ‘abcdefg
#5%&" () x+,-./0123456789:; <=>?QRABCDEFGHIJKLMNOPQRSTUVWXYZ [\]~_ ‘abcdefgh
$%&’ () x+,-./0123456789:; <=>?QRABCDEFGHIJKLMNOPQRSTUVWXYZ [\]”~_ ‘abcdefghi
%8’ () x+,—-./0123456789:; <=>?QABCDEFGHIJKLMNOPQRSTUVWXYZ [\]”~_ ‘abcdefghij

A frequent problem is that the output on the printer is not correctly aligned in columns but has a
“staircase” configuration. This usually means that the printer is configured to begin a new line at the left
margin after receiving both a <CR> (carriage return, ASCII 13) character and a <LF> (line feed, ASCII
10) character. NetBSD only sends a <LF> character. You can fix this problem in two ways:

+ by changing the configuration of the printer

« by using a simple printer filter (described later)

Note: In the previous example the Ipd spooler is not involved because the program output is sent
directly to the printer device (/dev/1pt0) and is not spooled.

12.2 Configuring /etc/printcap

This section explains how to configure the example printer to print text documents.

The printer must have an entry in the /etc/printcap file; the entry contains the printer id (the name of
the printer) and the printer description. The /p id is the default used by many programs. Here is an
example entry:

Example 12-1. /etc/printcap

lpllocal printer|HP DeskJet 690C:\
:1p=/dev/lpal:sd=/var/spool/lpd/lp:1f=/var/log/lpd-errs:\
:sh:pl#66:pw#80:1f=/usr/local/libexec/lpfilter:

The file format and options are described in detail in the printcap(5) manpage. Please note that an input
filter has been specified (with the if option) which will take care of eliminating the staircase problem:

if=/usr/local/libexec/lpfilter

Printer driver and HP printers: Example 12-1 uses the Jpa0 device (polled driver) for the printer,
instead of the Jpd0 (interrupt driven driver). Using interrupts there is a communication problem with
some printers, and the HP Deskjet 690C is one of them: printing is very slow and one PostScript
page can take hours. The problem is solved using the Ipa driver. It is also possible to compile a
custom kernel where Ipt is polled.

The printcap entry for the printer also specifies a spool directory, which must be created; this directory
will be used by the 1Ipd daemon to accumulate the data to be printed:

cd /var/spool/lpd
mkdir 1lp

chown daemon:daemon lp
chmod 770 1lp

HH H H I

92

Chapter 12 Printing

The only missing part is the 1pfilter input filter, which must be written. The only task performed by
this filter is to configure the printer for the elimination of the staircase problem before sending the text to
be printed. The printer used in this example requires the following initialization string: “<Esc>&k2G”.

Example 12-2. /usr/local/libexec/lpfilter

#!/bin/sh

Treat LF as CR+LF

printf "\033&k2G" && cat && exit O
exit 2

After saving this script into the name you used in /etc/printcap, you need to make sure it’s
executable:

chmod 755 /usr/local/libexec/lpfilterx

Note: There is another filter that can be used:
if=/usr/libexec/lpr/lpf:

This filter is much more complex than the one presented before. It is written to process the output of
nroff and handles underline and overprinting, expands tab characters and converts LF to CR + LF.
The source to this filter program can be found in /usr/src/usr.sbin/lpr/filters/lpf.c.

After everything is in place now, the Iptest command can be run again now, this time using the lpr
command, which will first send the data to the Ipd spooler, then runs the filter and sends the data off to
the printer:

lptest 70 5 | 1lpr -h

The lpr program prints text using the spooler to send data to the printer; the —h option turns off the
printing of a banner page (not really necessary, because of the sh option in /etc/printcap). Users
more familiar with the System V printing system can also use the Ip(1) command that comes as an
alternative to Ipr(1).

12.3 Configuring Ghostscript

Now that basic printing works, the functionality for printing PostScript files can be added. The simple
printer used in this example does not support native printing of PostScript files; a program must be used
which is capable of converting a PostScript document in a sequence of commands that the printer
understands. The Ghostscript program, which can be found in packages collection, can be used to this
purpose. This section explains how to configure 1pd to use Ghostscript to print PostScript files on the HP
Deskjet 690C.

A second id for the printer will be created in /etc/printcap: this new id will use a different input
filter, which will call Ghostscript to perform the actual print of the PostScript document. Therefore, text
documents will be printed on the /p printer and PostScript documents on the ps printer: both entries use
the same physical printer but have different printing filters.

93

Chapter 12 Printing

The same result can be achieved using different configurations. For example, a single entry with only one
filter could be used. For this, the filter should be able to automatically determine the format of the
document being printed, and use the appropriate printing program. This approach is simpler but leads to
a more complex filter; if you like it you should consider installing the magicfilter program from the
packages collection: it does this and many other things automatically.

For our approach, the new /etc/printcap file looks like this:

Example 12-3. /etc/printcap

lpl|local printer|HP DeskJet 690C:\
:1lp=/dev/1lpal:sd=/var/spool/lpd/lp:1f=/var/log/lpd-errs:\
:sh:pl#66:pw#80:1f=/usr/local/libexec/lpfilter:

ps|Ghostscript driver:\
:1lp=/dev/lpal:sd=/var/spool/lpd/ps:1f=/var/log/lpd-errs:\
:mx#0:sh:if=/usr/local/libexec/lpfilter-ps:

Option mx#0 is very important for printing PostScript files because it eliminates size restrictions on the
input file; PostScript documents tend to be very big. The i £ option points to the new filter. There is also a
new spool directory.

The next steps are the creation of the new spool directory and of the filter program. The procedure for the
spool directory is the same as above:

cd /var/spool/lpd
mkdir ps

chown daemon:daemon ps
chmod 770 ps

HH H = I

The filter program for PostScript output is more complex than the text base one: the file to be printed is
fed to the interpreter which converts it into a sequence of commands in the printer’s control language,
and then sends that off to the printer. We have achieved to transform a cheap color printer in a device
suitable for PostScript output, by virtue of the NetBSD operating system and some powerful freeware
packages. The options used to configure Ghostscript are described in the Ghostscript documentation:
cdj550 is the device used to drive the HP printer.

Example 12-4. /usr/local/libexec/lpfilter-ps

#!/bin/sh

Treat LF as CR+LF

printf "\033&k2G" || exit 2

Print the postscript file

/usr/pkg/bin/gs —dSAFER —-dBATCH —-dQUIET -dNOPAUSE -g -sDEVICE=cdj550 \
-sOutputFile=- -sPAPERSIZE=a4 - && exit O

exit 2

To summarize: two different printer names have been created on the system, which point to the same
physical printer but use different options, different filters and different spool directories. Text files and
PostScript files can be printed. To print PostScript files the Ghostscript package must be installed on the
system.

94

Chapter 12 Printing

12.4 Printer management commands

This section lists some useful BSD commands for printer and print jobs administration. Besides the
already mentioned lpr and Ipd commands, we have:

Ipq

examine the printer job queue.

Iprm

delete jobs from the printer’s queue.

Ipc

check the printing system, enable/disable printers and printer features.

12.5 Remote printing

It is possible to configure the printing system in order to print on a printer connected to a remote host.
Let’s say that, for example, you work on the wotan host and you want to print on the printer connected to
the loge host. The /etc/printcap file of loge is the one of Example 12-3. From wotan it will be
possible to print Postscript files using Ghostscript on loge.

The first step is to accept the print jobs submitted from the wotan host to the loge host. To accomplish
this, a line with the wotan host name must be added to the /etc/hosts. 1pd file on loge:

hostname

loge

cat /etc/hosts.lpd
wotan

The format of this file is very simple: each line contains the name of a host which is permitted to print on
the local system. By default the Ipd daemon only listens on UNIX domain sockets for local connections,
it won’t accept any network connects. To ensure the daemon also accepts incoming network traffic, the
following will need to be added to /etc/rc.conf:

lpd_flags=""

Next, the /etc/printcap file on wotan must be configured in order to send print jobs to loge. For
example:

lplline printer on loge:\
:1lp=:sd=/var/spool/lpd/lp:1f=/var/log/lp-errs:\
rrm=loge:rp=1p

ps|Ghostscript driver on loge:\
:1lp=:sd=/var/spool/lpd/ps:1f=/var/log/lp-errs:\
cmx#0:\

:rm=loge:rp=ps

There are four main differences between this configuration and the one of Example 12-3.

95

Chapter 12 Printing

1. The definition of “lp” is empty.

2. The “rm” (remote machine) entry defines the name of the host to which the printer is connected.
3. The “rp” (remote printer) entry defines the name of the printer connected to the remote host.

4. Tt is not necessary to specify input filters because the definitions on the loge host will be used.

5. The spool directories must still be created locally on wotan:

cd /var/spool/lpd
mkdir 1lp

chown daemon:daemon 1lp
chmod 770 1lp

mkdir ps

chown daemon:daemon ps
chmod 770 ps

HH H H = H H H

Now the print jobs for the “lp” and “ps” queues on wotan will be sent automatically to the printer
connected to loge.

96

Chapter 13
Using removable media

13.1 Initializing and using USB flash drives

USB flash drives can be used to share data among machines. After attaching it we can see via dmesg(8)
that it is recognised as sdo0:

dmesg

[...]

sd0 at scsibus0 target 0 lun 0: <Kingston, DataTraveler 3.0, > disk removable
sd0: fabricating a geometry

sd0: 14755 MB, 14755 cyl, 64 head, 32 sec, 512 bytes/sect x 30218842 sectors
sd0: fabricating a geometry

[...]

Warning

Please note that the following commands will erase all the previous contents on
the USB flash drive!

To initialize it we can write zeros in the first IMB of the USB flash drive:

dd if=/dev/zero of=/dev/rsd0d bs=1lm count=1

1+0 records in

1+0 records out

1048576 bytes transferred in 0.118 secs (8886237 bytes/sec)

Via fdisk(8) we can create a partition table. MS-DOS partition and filesystem is supported by most
operating systems and devices that accept an USB disk, so let’s update the partition table (—u), creating
an MS-DOS partition and set the new partition as active (-a):

fdisk —au sdO

fdisk: primary partition table invalid, no magic in sector 0

fdisk: Cannot determine the number of heads

Disk: /dev/rsd0d

NetBSD disklabel disk geometry:

cylinders: 14755, heads: 64, sectors/track: 32 (2048 sectors/cylinder)
total sectors: 30218842, bytes/sector: 512

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 30218842

Partitions aligned to 16065 sector boundaries, offset 63

97

Chapter 13 Using removable media

Do you want to change our idea of what BIOS thinks? [n]

Partition table:

0: <UNUSED>

1: <UNUSED>

2: <UNUSED>

3: <UNUSED>

Bootselector disabled.

No active partition.

Drive serial number: 0 (0x00000000)

Which partition do you want to change?: [none] 0
The data for partition 0 is:

<UNUSED>

sysid: [0..255 default: 169] 11

start: [0..1881lcyl default: 63, Ocyl, OMB]

size: [0..1881lcyl default: 30218779, 1881lcyl, 14755MB]
bootmenu: [] (space to clear)

Partition table:
0: Primary DOS with 32 bit FAT (sysid 11)
start 63, size 30218779 (14755 MB, Cyls 0-1881/9/10)
PBR is not bootable: All bytes are identical (0x00)
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
No active partition.
Drive serial number: 0 (0x00000000)
Which partition do you want to change?: [none]
Do you want to change the active partition? [n] y
Choosing 4 will make no partition active.
active partition: [0..4 default: 4] 0
Are you happy with this choice? [n] y

We haven’t written the MBR back to disk yet. This is your last chance.
Partition table:
0: Primary DOS with 32 bit FAT (sysid 11)
start 63, size 30218779 (14755 MB, Cyls 0-1881/9/10), Active
PBR is not bootable: All bytes are identical (0x00)
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
First active partition: 0
Drive serial number: 0 (0x00000000)
Should we write new partition table? [n] y

Then we can see via disklabel(8):

disklabel sdO
/dev/rsd0d:
type: SCSI

98

Chapter 13 Using removable media

disk: DataTraveler 3.0

label: fictitious

flags: removable

bytes/sector: 512

sectors/track: 32

tracks/cylinder: 64

sectors/cylinder: 2048

cylinders: 14755

total sectors: 30218842

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: O

5 partitions:

size offset fstype [fsize bsize cpg/sgs]
d: 30218842 0 unused 0 0 # (Cyl. 0 — 14755%)
e: 30218779 63 MSDOS # (Cyl. Ox— 14755%)

disklabel: boot block size 0
disklabel: super block size 0

that an sd0e MSDQOS partition is present.

We can finally create an MS-DOS filesystem via newfs_msdos(8):

newfs_msdos /dev/rsdOe

/dev/rsdle: 30189264 sectors in 1886829 FAT32 clusters (8192 bytes/cluster)

MBR type: 11

bps=512 spc=16 res=32 nft=2 mid=0xf0 spt=32 hds=64 hid=0 bsec=30218779 bspf=14741 rdcl=2 in

It is ready to be used and mounted via mount_msdos(8).

13.2 Initializing and using floppy disks

PC-style floppy disks work mostly like other disk devices like hard disks, except that you need to
low-level format them first. To use an common 1440 KB floppy in the first floppy drive, first (as root)
format it:

fdformat -f /dev/rfdOa
Then create a single partition on the disk using disklabel(8):
disklabel -rw /dev/rfdOa floppy3

Creating a small filesystem optimized for space:

newfs -m 0 -o space —-i 16384 -c 80 /dev/rfdOa

99

Chapter 13 Using removable media

Now the floppy disk can be mounted like any other disk. Or if you already have a floppy disk with an
MS-DOS filesystem on it that you just want to access from NetBSD, you can just do something like this:

mount -t msdos /dev/fd0a /mnt

However, rather than using floppies like normal (bigger) disks, it is often more convenient to bypass the
filesystem altogether and just splat an archive of files directly to the raw device. E.g.:

tar cvfz /dev/rfdla filel file2

A variation of this can also be done with MS-DOS floppies using the sysutils/mtools package which
has the benefit of not going through the kernel buffer cache and thus not being exposed to the danger of
the floppy being removed while a filesystem is mounted on it.

13.3 How to use a ZIP disk

1. See if your system has a ZIP drive:

dmesg | grep -i zip
sd0 at atapibus0O drive 1: <IOMEGA ZIP 100 ATAPI, , 14.A> type 0 direct removable

Seems it has one, and it’s recognized as sd0, just like any SCSI disk. The fact that the ZIP here is an
ATAPI one doesn’t matter - a SCSI ZIP will show up here, too. The ZIP is marked as "removable",
which means you can eject it with:

eject sdO
2. Insert ZIP disk
3. Check out what partitions are on the ZIP:

disklabel sdO
/dev/rsd0d:
type: ATAPI

8 partitions:

size offset fstype [fsize bsize cpg]
d: 196608 0 unused 0 0 # (Cyl. 0 - 95)
h: 196576 32 MSDOS # (Cyl. 0%x— 95)

disklabel: boot block size 0
disklabel: super block size 0

Partition d

is the whole disk, as usual on i386.

Partition h
is what you want, and you can see it’s a msdos filesystem even.
Hence, use /dev/sdOh to access the zip’s partition.

4. Mount it:

mount -t msdos /dev/sdOh /mnt

100

Chapter 13 Using removable media

5. Access your files:

1ls -la /mnt
total 40809
drwxr—-xr—-x 1 root wheel 16384 Dec 31 1979
drwxr-xr-x 28 root wheel 1024 Aug 2 22:06
“IrWXr—Xr—x 1 root wheel 1474560 Feb 23 1999 bootl.fs
—ITWXr—Xr—x 1 root wheel 1474560 Feb 23 1999 boot2.fs
1 root wheel 548864 Feb 23 1999 boot3.fs
1

root wheel 38271173 Feb 23 1999 netbsdl19990223.tar.gz

—IWXr—Xr—x

—IrwXr—Xr—xX
6. Unmount the ZIP:

umount /mnt
#

7. Eject the ZIP:

eject sdO
#

13.4 Reading data CDs with NetBSD

Data CDs can contain anything from programs, sound files (MP3, wav), movies (MP3, QuickTime) to
source code, text files, etc. Before accessing these files, a CD must be mounted on a directory, much like
hard disks are. Just as hard disks can use different filesystems (ffs, Ifs, ext2fs, ...), CDs have their own
filesystem, "cd9660". The NetBSD cd9660 filesystem can handle filesystems without and with
Rockridge and Joliet extensions.

CD devices are named /dev/cdOa for both SCSI and IDE (ATAPI).

With this information, we can start:

1. See if your system has some CD drive:

dmesg | grep 'cd[0-9]*:’
cd0 at atapibus0O drive 0: <CD-R/RW RW80402, , 1.12> type 5 cdrom removable
cdO0: 32-bit data port
cdO0: drive supports PIO mode 4, DMA mode 0

We have one drive here, "cd0". It is an IDE/ATAPI drive, as it is found on atapibus0. Of course the
drive (rather, its medium) is removable, i.e., you can eject it. See below.

2. Insert a CD
3. Mount the CD manually:

mount -t cd9660 /dev/cdla /mnt
#

This command shouldn’t print anything. It instructs the system to mount the CD found on /dev/cdOa
on /mnt, using the "cd9660" filesystem. The mountpoint "/mnt" must be an existing directory.

4. Check the contents of the CD:

1ls /mnt
INSTALL.html INSTALL.ps TRANS.TBL boot.catalog
INSTALL.more INSTALL.txt Dbinary installation

101

Chapter 13 Using removable media

#
Everything looks fine! This is a NetBSD CD, of course. :)
5. Unmount the CD:

umount /mnt

#

If the CD is still accessed (e.g. some other shell’s still "cd"’d into it), this will not work. If you shut
down the system, the CD will be unmounted automatically for you, there’s nothing to worry about
there.

6. Making an entry in /etc/fstab:

If you don’t want to type the full "mount" command each time, you can put most of the values into a
line in /etc/fstab:

Device mountpoint filesystem mount options
/dev/cdOa /cdrom cd9660 ro,noauto

Make sure that the mountpoint, /cdrom in our example, exists:

mkdir /cdrom
#

Now you can mount the cd with the following command:

mount /cdrom
#

Access and unmount as before.

The CD is not mounted at boot time due to the "noauto"” mount option - this is useful as you’ll
probably not have a CD in the drive all the time. See mount(8) and mount_cd9660(8) for some other
useful options.

7. Eject the CD:

eject cdO
#

If the CD is still mounted, it will be unmounted if possible, before being ejected.

13.5 Reading multi-session CDs with NetBSD

Use mscdlabel(8) to add all sessions to the CDs disklabel, and then use the appropriate device node to
mount the session you want. You might have to create the corresponding device nodes in /dev manually.
For example:

mscdlabel cdl
track (ctl=4) at sector 142312
adding as ’'a’
track (ctl=4) at sector 0
adding as ’'b’
1s -1 /dev/cdlb
ls: /dev/cdlb: No such file or directory
cd /dev
1s =1 cdlx

102

Chapter 13 Using removable media

brw-r-——--- 1 root operator 6, 8 Mar 18 21:55 cdla
brw-r—-————-— 1 root operator 6, 11 Mar 18 21:55 cdld
mknod cdlb b 6 9

to create /dev/cdlb. Make sure you fix the permissions of any new device nodes you create:

1s -1 cdlx

brw-r-———--- 1 root operator 6, 8 Mar 18 21:55 cdla
brw-r-—-r-- 1 root wheel 6, 9 Mar 18 22:23 cdlb
brw-r-————-— 1 root operator 6, 11 Mar 18 21:55 cdld

chgrp operator cdlb
chmod 640 cdlb
1ls -1 cdlx

brw-r—-————- 1 root operator 6, 8 Mar 18 21:55 cdla
brw-r————-— 1 root operator 6, 9 Mar 18 22:24 cdlb
brw-r-————- 1 root operator 6, 11 Mar 18 21:55 cdld

Now you should be able to mount it.

mount /dev/cdlb /mnt

13.6 Allowing normal users to access CDs

By default, NetBSD only allows "root" to mount a filesystem. If you want any user to be able to do this,
perform the following steps:

« Give groups and other the access rights to the device.

chmod go+rw /dev/cdOa
« Ask NetBSD to let users mounting filesystems.

sysctl -w vfs.generic.usermount=1

Note that this works for any filesystem and device, not only for CDs with a ISO 9660 filesystem.
To perform the mount operation after these commands, the user must own the mount point. So, for

example:

$ cd $HOME
$ mkdir cdrom
$ mount -t cd9660 —-o nodev,nosuid /dev/cdOa ‘pwd‘/cdrom

Please also see mount(8) and as an alternative the auto mount daemon amd(8), for which example config
files can be found in /usr/share/examples/amd.

13.7 Mounting an ISO image

Sometimes, it is interesting to mount an ISO9660 image file before you burn the CD; this way, you can
examine its contents or even copy files to the outside. If you are a Linux user, you should know that this
is done with the special loop filesystem. NetBSD does it another way, using the vnode pseudo-disk.

103

Chapter 13 Using removable media

We will illustrate how to do this with an example. Suppose you have an ISO image in your home
directory, called "mycd.iso":

1. Start by setting up a new vnode, "pointing" to the ISO file:
vnconfig —c vnd0 ~/mycd.iso
2. Now, mount the vnode:
mount -t cd9660 /dev/vndOa /mnt
3. Yeah, image contents appear under /mnt! Go to that directory and explore the image.
4. When you are happy, you have to umount the image:
umount /mnt
5. And at last, deconfigure the vnode:
vnconfig -u vndO
Note that these steps can also be used for any kind of file that contains a filesystem, not just ISO images.

See the vnd(4) and vnconfig(8) man pages for more information.

13.8 Using video CDs with NetBSD

To play MPEG Video streams as many DVD players can play them under NetBSD, mount the CD as you
would do with any normal (data) CD (see Section 13.4), then use the multimedia/xine-ui,
multimedia/mplayer ormultimedia/gmplayer package to play the mpeg files stored on the CD.

13.9 Using audio CDs with NetBSD

There are two ways to handle audio CDs:

1. Tell the CD drive to play to the headphone or to a soundcard, to which CDROMs are usually
connected internally. Use programs like cdplay(1), audio/xmcd, "kscd" from the
multimedia/kdemultimedia3 package, mixer programs like mixerctl(1), audio/xmix,
audio/xmmix, the Curses based audio/cam, or kmix, which is part of

multimedia/kdemultimedia3.
This usually works well on both SCSI and IDE (ATAPI) CDROMs, CDRW and DVD drives.

2. To read ("rip") audio tracks in binary form without going through digital->analog conversion and
back. There are several programs available to do this:

+ For most ATAPI, SCSI and several proprietary CDROM drives, the audio/cdparanoia package
can be used. With cdparanoia the data can be saved to a file or directed to standard output in WAV,
AIFF, AIFF-C or raw format. Currently the -g option is required by the NetBSD version of
cdparanoia. A hypothetical example of how to save track 2 as a WAV file is as follows:

$ cdparanoia -g /dev/rcd0d 2 track-02.wav
If you want to grab all files from a CD, cdparanoia’s batch mode is useful:

$ cdparanoia -g /dev/rcd0d -B

104

Chapter 13 Using removable media

« For ATAPI or SCSI CD-ROMs the audio/cdd package can be used. To extract track 2 with cdd,
type:
cdd -t 2 ‘pwd®
This will put a file called track-02.cda in the current directory.

+ For SCSI CD-ROMS the audio/tosha package can be used. To extract track 2 with tosha, you
should be able to type:

tosha -d CD-ROM-device -t 2 -o track-02.cda

The data can then be post-processed e.g. by encoding it into MP3 streams (see Section 13.10) or by
writing them to CD-Rs (see Section 13.12).

+ To streamline the process, from obtaining audio to populating the metadata for a track to
normalising audio and such, the audio/abcde package can be used.

abcde -d /dev/rcd0d -o mp3 -p -P

This will encode the disc track-by-track padding the tracknumbers with a leading O and using
UNIX pipes to read+encode without leaving the WAV files

13.10 Creating an MP3 (MPEG layer 3) file from an audio CD

The basic steps in creating an MPEG layer 3 (MP3) file from an audio CD (using software from the
NetBSD packages collection (http://www.NetBSD.org/docs/pkgsrc/)) are:

1. Extract (rip) the audio data of the CD as shown in Section 13.9.

2. Convert the CD audio format file to WAV format. You only need to perform this job if your ripping
program (e.g. tosha, cdd) didn’t already do the job for you!

« Using the audio/sox package, type:
$ sox -s -w —-c 2 —-r 44100 -t cdr track-02.cda track-02.wav

This will convert t rack-02 . cda in raw CD format to t rack-02.wav in WAV format, using
signed 16-bit words with 2 channels at a sampling rate of 44100kHz.

3. Encode the WAV file into MP3 format.
+ Using the audio/bladeenc package, type:
$ bladeenc -128 —-QUIT track-02.wav

This will encode track-02.wav into track-02.mp3 in MP3 format, using a bit rate if
128kBit/sec. The documentation for bladeenc describes bit-rates in more detail.

« Using the audio/lame package, type:
$ lame -p -o -v -V 5 -h track-02.wav track-02.mp3
You may wish to use a lower quality, depending on your taste and hardware.

The resultant MP3 file can be played with any of the audio/ggmpeg, audio/maplay, audio/mpgl23
or audio/splay packages.

105

Chapter 13 Using removable media

13.11 Using a CD-R writer with data CDs

The process of writing a CD consists of two steps: First, a "image" of the data must be generated, which
can then be written to CD-R in a second step.

1. Reading a pre-existing ISO image

dd if=/dev/rcdOa of=filename.iso bs=2k
i

Alternatively, you can create a new ISO image yourself:
2. Generating the ISO image

Put all the data you want to put on CD into one directory. Next you need to generate a disk-like ISO
image of your data. The image stores the data in the same form as they’re later put on CD, using the
ISO 9660 format. The basic ISO9660 format only understands 8+3 filenames (max. eight letters for
filename, plus three more for an extension). As this is not practical for Unix filenames, a so-called
"Rockridge Extension" needs to be employed to get longer filenames. (A different set of such
extension exists in the Microsoft world, to get their long filenames right; that’s what’s known as
Joliet filesystem).

The ISO image is created using the mkisofs command, which is part of the sysutils/cdrtools
package.

Example: if you have your data in /usr/tmp/data, you can generate a ISO image file in
/usr/tmp/data.iso with the following command:

$ ed /usr/tmp
$ mkisofs -o data.iso -r data
Using NETBS000.GZ;1 for data/binary/kernel/netbsd.INSTALL.gz (netbsd.INSTALL_TINY.gz)
Using NETBS001.GZ;1 for data/binary/kernel/netbsd.GENERIC.gz (netbsd.GENERIC_TINY.gz)
5.92% done, estimate finish Wed Sep 13 21:28:11 2000
11.83% done, estimate finish Wed Sep 13 21:28:03 2000
17.74% done, estimate finish Wed Sep 13 21:28:00 2000
23.64% done, estimate finish Wed Sep 13 21:28:03 2000

88.64% done, estimate finish Wed Sep 13 21:27:55 2000
94.53% done, estimate finish Wed Sep 13 21:27:55 2000

Total translation table size: 0

Total rockridge attributes bytes: 5395

Total directory bytes: 16384

Path table size(bytes): 110

Max brk space used 153c4

84625 extents written (165 Mb)

$

Please see the mkisofs(8) man page for other options like noting publisher and preparer. The
Bootable CD ROM How-To (http://www.NetBSD.org/docs/bootcd.html) explains how to generate a
bootable CD.

3. Writing the ISO image to CD-R

When you have the ISO image file, you just need to write it on a CD. This is done with the
"cdrecord" command from the sysutils/cdrtools package. Insert a blank CD-R, and off we go:

cdrecord -v dev=/dev/rcd0d data.iso

106

Chapter 13 Using removable media

#

After starting the command, ’cdrecord’ shows you a lot of information about your drive, the disk
and the image you’re about to write. It then does a 10 seconds countdown, which is your last chance
to stop things - type ~C if you want to abort. If you don’t abort, the process will write the whole
image to the CD and return with a shell prompt.

Note that cdrecord(8) works on both SCSI and IDE (ATAPI) drives.
4. Test

Mount the just-written CD and test it as you would do with any "normal" CD, see Section 13.4.

13.12 Using a CD-R writer to create audio CDs

If you want to make a backup copy of one of your audio CDs, you can do so by extracting ("ripping") the
audio tracks from the CD, and then writing them back to a blank CD. Of course this also works fine if
you only extract single tracks from various CDs, creating your very own mix CD!

The steps involved are:

1. Extract ("rip") the audio tracks as described as in Section 13.9 to get a couple of .wav files.

2. Write the .wav files using cdrecord command from the sysutils/cdrtools package:

cdrecord -v dev=/dev/rcd0d -audio -pad *.wav

13.13 Creating an audio CD from MP3s

If you have converted all your audio CDs to MP3 and now want to make a mixed CD for your (e.g.) your
car, you can do so by first converting the .mp3 files back to .wav format, then write them as a normal
audio CD.

The steps involved here are:

1. Create .wav files from your .mp3 files:

$ mpgl23 -w foo.wav foo.mp3

Do this for all of the MP3 files that you want to have on your audio CD. The .wav filenames you use
don’t matter.

2. Write the .wav files to CD as described under Section 13.12.

13.14 Copying an audio CD

To copy an audio CD while not introducing any pauses as mandated by the CDDA standard, you can use
cdrdao for that:

cdrdao read-cd —--device /dev/rcdOd data.toc

cdrdao write ——device /dev/rcdld data.toc

107

Chapter 13 Using removable media

13.15 Copying a data CD with two drives

If you have both a CD-R and a CD-ROM drive in your machine, you can copy a data CD with the
following command:

cdrecord dev=/dev/rcdld /dev/rcd0d

Here the CD-ROM (cd0) contains the CD you want to copy, and the CD-R (cd1) contains the blank disk.
Note that this only works with computer disks that contain some sort of data, it does not work with audio
CDs! In practice you’ll also want to add something like "speed=8" to make things a bit faster.

13.16 Using CD-RW rewritables

You can treat a CD-RW drive like a CD-R drive (see Section 13.11) in NetBSD, creating images with
mkisofs(8) and writing them on a CD-RW medium with cdrecord(8).

L]

If you want to blank a CD-RW, you can do this with cdrecord’s "blank" option:
cdrecord dev=/dev/rcd0d blank=fast

There are several other ways to blank the CD-RW, call cdrecord(8) with "blank=help" for a list. See
the cdrecord(8) man page for more information.

13.17 DVD support

Currently, NetBSD supports ISO 9660 and UDF DVD media. Information about mounting ISO 9660 and
UDF filesystems can be found in the mount_cd9660(8) and mount_udf(8) manual pages respectively.
DVDs, DivX and many avi files be played with multimedia/ogle or multimedia/gmplayer.

For some hints on creating DVDs, see this postings about growisofs
(http://mail-index.NetBSD.org/current-users/2004/01/06/0021.html) and this article about recording CDs
and DVDs with NetBSD (http://www.mreriksson.net/blog/archive/15/).

13.18 Creating ISO images from a CD

To create an ISO image and save the checksum do this:

readcd dev=/dev/cd0d f=/tmp/cd.iso

Here is an alternative using dd(1):

dd if=/dev/cd0d of=/tmp/cd.iso bs=2048

If the CD has errors you can recover the rest with this:

dd if=/dev/cd0d of=/tmp/cd.iso bs=2048 conv=noerror

To create an ISO image from a mounted data CD first, mount the CD disk by:

mount -t cd9660 -r /dev/cd0d /mnt/cdrom

108

Chapter 13 Using removable media

Second, get the image:

mkhybrid -v -1 -J -R -o /tmp/my_cd.iso /mnt/cdrom/

13.19 Getting volume information from CDs and ISO images

You can read the volume data from an unmounted CD with this command:

file -s /dev/cdOd

You can read the volume data from an ISO image with this command:

isoinfo -d -i /tmp/my_cd.iso

You can get the unique disk number from an unmounted CD with this:

cd-discid /dev/cd0d

You can read the table of contents of an unmounted CD with this command:

cdrecord -v dev=/dev/cd0d -toc

109

Chapter 14
The cryptographic device driver
(CGD)

The cgd driver provides functionality which allows you to use disks or partitions for encrypted storage.
After providing the appropriate key, the encrypted partition is accessible using cgd pseudo-devices.

14.1 Overview

People often store sensitive information on their hard disks and are concerned about this information
falling into the wrong hands. This is particularly relevant to users of laptops and other portable devices,
or portable media, which might be stolen or accidentally misplaced.

14.1.1 Why use disk encryption?

File-oriented encryption tools like GnuPG are great for encrypting individual files, which can then be
sent across untrusted networks as well as stored encrypted on disk. But sometimes they can be
inconvenient, because the file must be decrypted each time it is to be used; this is especially cumbersome
when you have a large collection of files to protect. Any time a security tool is cumbersome to use,
there’s a chance you’ll forget to use it properly, leaving the files unprotected for the sake of convenience.

Worse, readable copies of the encrypted contents might still exist on the hard disk. Even if you overwrite
these files (using rm -P) before unlinking them, your application software might make temporary copies
you don’t know about, or have been paged to swapspace—and even your hard disk might have silently
remapped failing sectors with data still in them.

The solution is to simply never write the information unencrypted to the hard disk. Rather than taking a
file-oriented approach to encryption, consider a block-oriented approach—a virtual hard disk, that looks
just like a normal hard disk with normal filesystems, but which encrypts and decrypts each block on the
way to and from the real disk.

14.1.2 Logical Disk Drivers

The cgd device looks and behaves to the rest of the operating system like any other disk driver. Rather
than driving real hardware directly, it provides a logical function layered on top of another block device.
It has a special configuration program, cgdconfig, to create and configure a cgd device and point it at the
underlying disk device that will hold the encrypted data.

NetBSD includes several other similar logical block devices, each of which provides some other function
where cgd provides encryption. You can stack several of these logical block devices together: cgd on top

110

Chapter 14 The cryptographic device driver (CGD)

of vnd is handy to make an encrypted volume in a regular file without repartitioning, or you can make an
encrypted raid to protect your encrypted data against hard disk failure as well.

Once you have created a cgd disk, you can use disklabel to divide it up into partitions, swapctl to enable
swapping to those partitions or newfs to make filesystems, then mount and use those filesystems, just
like any other new disk.

14.1.3 Availability

The cgd driver was written by Roland C. Dowdeswell, and introduced in the NetBSD 2.0 release.

14.2 Components of the Crypto-Graphic Disk system

A number of components and tools work together to make the cgd system effective.

14.2.1 Kernel driver pseudo-device

To use cgd you need a kernel with support for the cgd pseudo-device. Make sure the sure the module is
loaded:

modload cgd

If the cgd driver was not already present/loaded (it is loaded by default in some ports), add egd to
/etc/modules.conf.

14.2.2 Ciphers

The following ciphers are supported:

adiantum (key size: 256 bits)

The Adiantum tweakable wide-block cipher. The Adiantum tweak for each disk sector is taken to be
the little-endian encoding of the disk sector number.

Adiantum provides the best security by encrypting entire disk sectors at a time (512 bytes), and
generally provides the best performance on machines without CPU support for accelerating AES.
aes-cbc (key sizes: 128, 192, or 256 bits)

AES in CBC mode. The CBC initialization vector for each disk sector is chosen to be the
encryption under AES of the little-endian encoding of the disk sector number. The default key
length is 128 bits.

aes-xts (key sizes: 256 or 512 bits)

AES in XTS mode. The XTS tweak for each disk sector is chosen to be the little-endian encoding of
the disk sector number. AES-XTS uses a 256-bit or 512-bit key, composed of a pair of AES-128 or
AES-256 keys. The default key length is 256, meaning AES-128.

111

Chapter 14 The cryptographic device driver (CGD)

14.2.3 Obsolete Ciphers

The following obsolete ciphers are supported for compatibility with old disks.

WARNING: These obsolete ciphers are implemented without timing side channel protection, so, for
example, JavaScript code in a web browser that can measure the timing of disk activity may be able to
recover the secret key. These are also based on 64-bit block ciphers and are therefore unsafe for disks
much larger than a gigabyte. You should not use these except where compatibility with old disks is
necessary.

3des-cbe (key size: 192 bits)

3DES (Triple DES with EDE3) in CBC mode. The CBC initialization vector for each disk sector is
chosen to be the encryption under 3DES of the little-endian encoding of the disk sector number,
which has no impact on security but reduces performance.

Note: Internally, the “parity bits” of the 192-bit key are ignored, so there are only 168 bits of key
material, and owing to generic attacks on 64-bit block ciphers and to meet-in-the-middle attacks on
compositions of ciphers as in EDE3 the security is much lower than one might expect even for a
168-bit key.

blowfish-cbc (key sizes: 40, 48, 56, 64, ..., 432, 440, or 448 bits)

Blowfish in CBC mode. The CBC initialization vector for each disk sector is chosen to be the
encryption under Blowfish of the little-endian encoding of the disk sector number. It is strongly
encouraged that keys be at least 128 bits long. There are no performance advantages of using
shorter keys. The default key length is 128 bits.

14.2.4 Verification Methods

cgdconfig can examine the disk to verify that it was decrypted using the correct key. The following
verification methods are available:

none

No verification is performed. This is dangerous unless you are configuring a new cgd device for the
first time, because the key is not verified at all. Entering the wrong passphrase, for example, may
destroy any data on the volume—any data read will be garbage, and any data written will turn into
garbage if you ever re-open the cgd volume with the correct passphrase.

disklabel

cgdconfig scans for a valid BSD disklabel; see disklabel(5) and disklabel(8).

mbr

cgdconfig scans for a valid Master Boot Record, traditionally used on PCs; see fdisk(8).

gpt

cgdconfig scans for a valid GUID partition table; see gpt(8).

112

Chapter 14 The cryptographic device driver (CGD)

ffs
cgdconfig scans for a valid FFS file system, the default file system used in NetBSD; see
mount_ffs(8).

re—enter

Rather than scanning anything on disk, cgdconfig will compute the key twice—for example, by
asking the user to enter the passphrase twice—and fail if the results are different.

14.3 Example: encrypting your disk

This section works through a step-by-step example of converting an existing system to use cgd,
performing the following actions:

1. Preparing the disk and partitions

2. Scrub off all data

3. Create the cgd

4. Adjust config-files

5. Restoring your backed-up files to the encrypted disk

14.3.1 Preparing the disk

First, decide which filesystems you want to move to an encrypted device. You’re going to need to leave at
least the small root (/) filesystem unencrypted, in order to load the kernel and run init, cgdconfig and the
re.d scripts that configure your cgd. In this example, we’ll encrypt everything except the root (/)
filesystem.

We are going to delete and re-make partitions and filesystems, and will require a backup to restore the
data. So make sure you have a current, reliable backup stored on a different disk or machine. Do your
backup in single-user mode, with the filesystems unmounted, to ensure you get a clean dump. Make sure
you back up the disklabel of your hard disk as well, so you have a record of the partition layout before
you started.

With the system at single user, / mounted read-write and everything else unmounted, use disklabel to
delete all the data partitions you want to move into cgd.

Then make a single new partition in all the space you just freed up, say, wdOe. Set the partition type for
this partition to cgd Though it doesn’t really matter what it is, it will help remind you that it’s not a
normal filesystem later. When finished, label the disk to save the new partition table.

14.3.2 Scrubbing the disk

We have removed the partition table information, but the existing filesystems and data are still on disk.
Even after we make a cgd device, create filesystems, and restore our data, some of these disk blocks
might not yet be overwritten and still contain our data in plaintext. This is especially likely if the
filesystems are mostly empty. We want to scrub the disk before we go further.

113

Chapter 14 The cryptographic device driver (CGD)

We could use dd to copy /dev/zero over the new wdOe partition, but this will leave our disk full of
zeros, except where we’ve written encrypted data later. We might not want to give an attacker any clues
about which blocks contain real data, and which are free space, so we want to write "noise" into all the
disk blocks. So we’ll create a temporary cgd, configured with a random, unknown key.

First, we configure a cgd to use a random key:
cgdconfig -s cgd0 /dev/wdOe aes-xts 256 < /dev/urandom

Now we can write zeros into the raw partition of our cgd (/dev/rcgd0d on NetBSD/i386 and amd64,
/dev/rcgdOc on most other platforms):

dd if=/dev/zero of=/dev/rcgd0d bs=64k

The encrypted zeros will look like random data on disk. This might take a while if you have a large disk.
Once finished, unconfigure the random-key cgd:

cgdconfig —u cgd0

14.3.3 Creating the cgd

The cgdconfig program, which manipulates cgd devices, uses parameters files to store such information
as the encryption type, key length, and a random password salt for each cgd. These files are very
important, and need to be kept safe—without them, you will not be able to decrypt the data!

We’ll generate a parameters file and write it into the default location (make sure the directory /etc/cgd
exists and is mode 700):

cgdconfig —-g -V disklabel -o /etc/cgd/wdOe aes-cbc 256

This creates a parameters file /etc/cgd/wd0Oe describing a cgd using the aes—cbc cipher method, a
key verification method of disklabel, and a key length of 256 bits. It will look something like this:

algorithm aes-cbc;
iv-method encblkno;
keylength 256;
verify_method disklabel;
keygen pkcsb5_pbkdf2/shal {
iterations 6275;
salt AAAAgHTg/JKCd2ZJi0SGrgnadGw=;
}i

Note: Consider this file being SACRED, BACK IT UP, and BACK IT UP AGAIN!
Tip: When creating the parameters file, cgdconfig reads from /dev/random to create the password
salt. This read may block if there is not enough collected entropy in the random pool. This is unlikely,

especially if you just finished overwriting the disk as in the previous step, but if it happens you can
press keys on the console and/or move your mouse until the rnd device gathers enough entropy.

114

Chapter 14 The cryptographic device driver (CGD)

Now it’s time to create our cgd, for which we’ll need a passphrase. This passphrase needs to be entered
every time the cgd is opened, which is usually at each reboot. The encryption key is derived from this
passphrase and the salt. Make sure you choose something you won’t forget, and others won’t guess.

The first time we configure the cgd, there is no valid disklabel on the logical device, so the validation
mechanism we want to use later won’t work. We override it this one time:

cgdconfig -V re—enter cgd0 /dev/wdOe

This will prompt twice for a matching passphrase, just in case you make a typo, which would otherwise
leave you with a cgd encrypted with a passphrase that’s different to what you expected.

Now that we have a new cgd, we need to partition it and create filesystems. Recreate your previous
partitions with all the same sizes, with the same letter names.

Tip: Remember to use the disklabel -1 argument, because you're creating an initial label for a new
disk.

Note: Although you want the sizes of your new partitions to be the same as the old, unencrypted
ones, the offsets will be different because they’re starting at the beginning of this virtual disk.

Then, use newfs to create filesystems on all the relevant partitions. This time your partitions will reflect
the cgd disk names, for example:

newfs /dev/rcgdOh

14.3.4 Modifying configuration files

We’ve moved several filesystems to another (logical) disk, and we need to update /etc/fstab
accordingly. Each partition will have the same letter (in this example), but will be on cgd0 rather than
wd0. So you’ll have /etc/fstab entries something like this:

/dev/wd0a / ffs rw 11

/dev/cgd0b none swap sSw 00
/dev/cgd0b /tmp mfs rw, -s=132m 00
/dev/cgdle /var ffs rw 12
/dev/cgd0f /usr ffs rw 12
/dev/cgd0h /home ffs rw 12

Note: /tmp should be a separate filesystem, either mfs or ££s, inside the cgd, so that your temporary
files are not stored in plain text in the / filesystem.

Each time you reboot, you’re going to need your cgd configured early, before fsck runs and filesystems
are mounted.

Put the following line in /etc/cgd/cgd.conf:

cgdo /dev/wdOe

115

Chapter 14 The cryptographic device driver (CGD)

This will use /etc/cgd/wd0e as config file for cgdo.

To finally enable cgd on each boot, put the following line into /etc/rc.conf:
cgd=YES

You should now be prompted for /dev/cgd0’s passphrase whenever /etc/rc starts.

14.3.5 Restoring data

Next, mount your new filesystems, and restore your data into them. It often helps to have /tmp mounted
properly first, as restore can use a fair amount of temporary space when extracting a large dumpfile.

To test your changes to the boot configuration, umount the filesystems and unconfigure the cgd, so
when you exit the single-user shell, re will run like on a clean boot, prompting you for the passphrase
and mounting your filesystems correctly. Now you can bring the system up to multi-user, and make sure
everything works as before.

14.4 Example: encrypted CDs/DVDs

14.4.1 Creating an encrypted CD/DVD

cgd(4) provides highly secure encryption of whole partitions or disks. Unfortunately, creating "normal”
CDs is not disklabeling something and running newfs on it. Neither can you just put a CDR into the
drive, configure cgd and assume it to write encrypted data when syncing. Standard CDs contain at least
an [SO-9660 filesystem created with mkisofs(8) from the sysutils/cdrtools package. ISO images
may not contain disklabels or cgd partitions.

But of course CD reader/writer hardware doesn’t care about filesystems at all. You can write raw data to
the CD if you like—or an encrypted FFS filesystem, which is what we’ll do here. But be warned, there is
NO way to read this CD with any OS except NetBSD—not even other BSDs due to the lack of cgd.

The basic steps when creating an encrypted CD are:

+ Create an (empty) imagefile

+ Register it as a virtual disk using vnd(4)
« Configure cgd inside the vnd disk

« Copy content to the cgd

« Unconfigure all (flush!)

» Write the image on a CD

The first step when creating an encrypted CD is to create a single image file with dd. The image may not
grow, so make it large enough to allow all CD content to fit into. Note that the whole image gets written
to the CD later, so creating a 700 MB image for 100 MB content will still require a 700 MB write
operation to the CD. Some info on DVDs here: DVDs are only 4.7 GB in marketing language. 4.7GB =
4.7 x 1024 x 1024 x 1024 = 5046586573 bytes. In fact, a DVD can only approximately hold 4.7 x 1000 x

116

Chapter 14 The cryptographic device driver (CGD)
1000 x 1000 = 4700000000 bytes, which is about 4482 MB or about 4.37 GB. Keep this in mind when
creating DVD images. Don’t worry for CDs, they hold "real" 700 MB (734003200 Bytes).
Invoke all following commands as root!

For a CD:

dd if=/dev/zero of=image.img bs=1lm count=700
or, for a DVD:

dd if=/dev/zero of=image.img bs=1m count=4482
Now configure a vnd(4)-pseudo disk with the image:

vnconfig vnd0 image.img

In order to use cgd, a so-called parameter file, describing encryption parameters and a containing
"password salt" must be generated. We’ll call it /etc/cgd/image here. You can use one parameter file
for several encrypted partitions (I use one different file for each host and a shared file image for all
removable media, but that’s up to you).

AES-CBC with a keylength of 256 bits will be used in this example. Refer to cgd(4) and cgdconfig(8) for
further details and alternative ciphers.

The following command will create the parameter file as /etc/cgd/image. YOU DO NOT WANT TO
INVOKE THE FOLLOWING COMMAND AGAIN after you burnt any CD, since a recreated parameter
file is a lost parameter file and you’ll never access your encrypted CD again (the "salt" this file contains
will differ among each call). Consider this file being SACRED, BACK IT UP and BACK IT UP AGAIN!
Use switch -V to specify verification method "disklabel" for the CD (cgd cannot detect whether you
entered a valid password for the CD later when mounting it otherwise).

cgdconfig —-g -V disklabel aes-cbc 256 > /etc/cgd/image

Now it’s time to configure a cgd for our vnd drive. (Replace slice "d" with "c" for all platforms that use
"c" as the whole disk (where "sysctl kern.rawpartition" prints "2", not "3"); if you’re on 1386 or amd64,
"d" is OK for you):

cgdconfig -V re—enter cgdl /dev/vndO0d /etc/cgd/image

The "-v re-enter" option is necessary as long as the cgd doesn’t have a disklabel yet so we can access
and configure it. This switch asks for a password twice and uses it for encryption.

Now it’s time to create a disklabel inside the cgd. The defaults of the label are ok, so invoking disklabel
with

disklabel -e -I cgdl

and leaving vi with ":wq" immediately will do.

Let’s create a filesystem on the cgd, and finally mount it somewhere:

newfs /dev/rcgdla
mount /dev/cgdla /mnt

117

Chapter 14 The cryptographic device driver (CGD)

The cgd is alive! Now fill /mnt with content. When finished, reverse the configuration process. The steps
are:

1. Unmounting the cgdla:
umount /mnt

2. Unconfiguring the cgd:
cgdconfig -u cgdl

3. Unconfiguring the vnd:

vnconfig -u vndO

The following commands are examples to burn the images on CD or DVD. Please adjust the dev=for
cdrecord or the /dev/rcd0d for growisofs. Note the "rcd0d" is necessary with NetBSD. Growisofs is

available in the sysutils/dvd+rw-tools package. Again, use "c" instead of "d" if this is the raw
partition on your platform.

Finally, write the image file to a CD:

cdrecord dev=/dev/rcd0d -v image.img

..ortoa DVD:

growisofs —dvd-compat -z /dev/rcdOd=image.img

Congratulations! You’ve just created a really secure CD!

14.4.2 Using an encrypted CD/DVD

After creating an encrypted CD as described above, we’re not done yet—what about mounting it again?
One might guess, configuring the cgd on /dev/cd0d is enough—no, it is not.

NetBSD cannot access FFS file systems on media that is not 512 bytes/sector format. It doesn’t matter
that the cgd on the CD is, since the CD’s disklabel the cgd resides in has 2048 bytes/sector.

But the CD driver cd(4) is smart enough to grant "write" access to the (emulated) disklabel on the CD.
So before configuring the cgd, let’s have a look at the disklabel and modify it a bit:

disklabel -e cdO

/dev/rcd0d:

type: ATAPI

disk: mydisc

label: fictitious

flags: removable

bytes/sector: 2048 # —— Change to 512 (= orig / 4)
sectors/track: 100 # —— Change to 400 (= orig 4)
tracks/cylinder: 1

sectors/cylinder: 100 # -- Change to 400 (= orig * 4)
cylinders: 164

total sectors: 16386 # -- Change to value of slice "d" (=65544)
rpm: 300

interleave: 1

trackskew: 0

118

Chapter 14 The cryptographic device driver (CGD)

cylinderskew: 0

headswitch: O # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

4 partitions:

size offset fstype [fsize bsize cpg/sgs]
a: 65544 0 4.2BSD 0 0 0 # (Cyl. 0 - 655+)
d: 65544 0 IS09660 O 0 # (Cyl. 0 - 655+)

If you don’t want to do these changes every time by hand, you can use Florian Stoehr’s tool neb-cd512
which is (at time of writing this) in pkgsrc-wip and will move to sysutils/neb-cd512 soon. You can
also download the neb-cd512 source from http://sourceforge.net/projects/neb-stoehr/
(http://sourceforge.net/projects/neb-stoehr/) (be sure to use neb-cd512, not neb-wipe!).

It is invoked with the disk name as parameter, by root:

neb-cd512 cdO

Now as the disklabel is in 512 b/s format, accessing the CD is as easy as:

cgdconfig cgdl /dev/cd0d /etc/cgd/image
mount -o ro /dev/cgdla /mnt

Note that the cgd MUST be mounted read-only or you’ll get illegal command errors from the cd(4) driver
which can in some cases make even mounting a CD-based cgd impossible!

Now we’re done! Enjoy your secure CD!
ls /mnt
Remember you have to reverse all steps to remove the CD:

umount /mnt
cgdconfig —u cgdl
eject cdO

14.5 Example: encrypted iSCSI devices

14.5.1 Creating an encrypted iSCSI device

To encrypt the iISCSI device, we use the NetBSD iSCSI initiator, available in NetBSD-6 and newer, and
the standard cgd device. In all, setting up an encrypted device in this manner should take less than 15
minutes, even for someone unfamiliar with iSCSI or cgd.

The approach is to layer a vnd on top of the "storage" file presented by the iSCSI target. This is exactly
the same as normal. On top of that vnd, we layer a cgd device, which ensures that all data is encrypted on
the iSCSI device.

WARNING: cgd only keeps the content of the volume secret—it doesn’t keep the access patterns secret,
and it doesn’t prevent or even detect a malicious network or iSCSI target tampering with the volume.

119

Chapter 14 The cryptographic device driver (CGD)

14.5.2 Device Initialisation

Firstly, the initiator is started, pointing at the machine which is presenting the iSCSI storage (i.e. the
machine on which the iSCSI target is running). In this example, the target is running on the same
machine as the initiator (a laptop called, in a moment of inspiration, inspiron1300). A 50 MB iSCSI
target is being presented as target].

iscsi-initiator —u agc -h inspironl300.wherever.co.uk /mnt &

[1] 11196

df

Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/dk0 28101396 20862004 5834324 8% /

kernfs 1 1 0 100% /kern
procfs 4 4 0 100% /proc
ptyfs 1 1 0 100% /dev/pts
/dev/puffs 0 0 0 100% /mnt

Looking at the last line, we can see that the initiator is running via the puffs device.

A vnd device is created on top of the storage which the target is presenting:
vnconfig vnd0 /mnt/inspironl300.wherever.co.uk/targetl/storage

A disklabel which is offset 63 blocks into the iSCSI device needs to be added. This is so that the
encrypted device which we shall put on top of the vnd does not clash with the vnd’s label. The cgd’s type
should be set to "cgd".

disklabel -e wvndO

/dev/rvnd0d:

type: vnd

disk: wvnd

label: fictitious

flags:

bytes/sector: 512

sectors/track: 32

tracks/cylinder: 64

sectors/cylinder: 2048

cylinders: 50

total sectors: 102400

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: O # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

4 partitions:

size offset fstype [fsize bsize cpg/sgs]
a: 102336 63 cgd 2048 16384 28360 # (Cyl. 0 - 49
d: 102400 0 unused 0 0 # (Cyl. 0 -

The cgd device can now be created on the vnd device

120

Chapter 14 The cryptographic device driver (CGD)

cgdconfig -s cgd0 /dev/vndOa aes-xts 256 < /dev/urandom
and the cgd device’s storage zeroed

dd if=/dev/zero of=/dev/rcgd0d bs=32k

dd: /dev/rcgd0d: Invalid argument

1601+0 records in

1600+0 records out

52428800 bytes transferred in 16.633 secs (3152095 bytes/sec)

Unconfigure the cgd device and write a disklabel using the verification method onto the cgd. Note:
sometimes, this process does not always complete properly, and so it has to be repeated.

cgdconfig —-g -V disklabel -o /etc/cgd/vndOa aes-cbc 256
cgdconfig: could not calibrate pkcs5_pbkdf2
cgdconfig: Failed to generate defaults for keygen

cgdconfig —-g -V disklabel -o /etc/cgd/vndOa aes-cbc 256

A password can then be added to the cgd device

cgdconfig -V re—enter cgd0 /dev/vndOa
/dev/vnd0a’s passphrase:
re—-enter device’s passphrase:

Then create a disklabel inside the cgd itself

disklabel -I -e cgd0

/dev/rcgd0d:

type: cgd

disk: cgd

label: fictitious

flags:

bytes/sector: 512

sectors/track: 2048

tracks/cylinder: 1

sectors/cylinder: 2048

cylinders: 49

total sectors: 102336

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

4 partitions:

size offset fstype [fsize bsize cpg/sgs]
a: 102336 0 4.2BSD 2048 16384 28360 # (Cyl. 0 - 49%)
d: 102336 0 unused 0 0 # (Cyl. 0 - 49x)

Having placed a disklabel inside the cgd, we can now make a filesystem on there:

121

Chapter 14 The cryptographic device driver (CGD)

newfs /dev/rcgdOa

/dev/rcgdOa: 50.0MB (102336 sectors) block size 8192, fragment size 1024
using 4 cylinder groups of 12.49MB, 1599 blks, 3136 inodes.

super-block backups (for fsck_ffs -b #) at:

32, 25616, 51200, 76784,

the new file system in the cgd can now be mounted

df

Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/dk0 28101396 20910216 5786112 78% /

kernfs 1 1 0 100% /kern
procfs 4 4 0 100% /proc
ptyfs 1 1 0 100% /dev/pts
/dev/puffs 0 0 0 100% /mnt

mount /dev/cgdOa /iscsi

df

Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/dk0 28101396 20910216 5786112 78% /

kernfs 1 1 0 100% /kern
procfs 4 4 0 100% /proc
ptyfs 1 1 0 100% /dev/pts
/dev/puffs 0 0 0 100% /mnt
/dev/cgdla 49519 1 47043 0% /iscsi

The new file system, mounted on /iscsi, can now be used as normal.

14.5.3 Unmounting the Encrypted Device

The device can be freed up using the following commands

umount /iscsi
cgdconfig —u cgdO

vnconfig -u vnd0

14.5.4 Normal Usage

In normal usage, the device can be mounted. Firstly, the initiator must be configured to connect to the
device:

wvnconfig vnd0 /mnt/inspironl300.wherever.co.uk/targetl/storage
cgdconfig cgd0 /dev/vndOa

/dev/vnd0a’s passphrase:

mount /dev/cgdla /iscsi

1ls —al /isecsi

total 3

Adrwxr—-xr—x 2 root wheel 512 Jan 1 1970

drwxr-xr-x 35 root wheel 1536 Jan 5 08:59

df
Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/dk0 28101396 20910100 5786228 78% /

122

Chapter 14 The cryptographic device driver (CGD)

kernfs 1 1 0 100% /kern
procfs 4 4 0 100% /proc
ptyfs 1 1 0 100% /dev/pts
/dev/puffs 0 0 0 100% /mnt
/dev/cgdla 49519 1 47043 0% /iscsi

14.6 Suggestions and Warnings

You now have your filesystems encrypted within a cgd. When your machine is shut down, the data is
protected, and can’t be decrypted without the passphrase. However, there are still some dangers you
should be aware of, and more you can do with cgd. This section documents several further suggestions
and warnings that will help you use cgd effectively.

« Use multiple cgd’s for different kinds of data, one mounted all the time and others mounted only
when needed.

» Use a cgd configured on top of a vnd made from a file on a remote network fileserver (NFS, SMBFS,
CODA, etc) to safely store private data on a shared system. This is similar to the procedure for using
encrypted CDs and DVDs described in Section 14.4.

14.6.1 Using a random-key cgd for swap

The following section will be replaced in NetBSD 10 by a sysctl knob “vm.swap_encrypt=1", which
provides better security and simpler setup.

You may want to use a dedicated random-key cgd for swap space, regenerating the key each reboot. The
advantage of this is that once your machine is rebooted, any sensitive program memory contents that may
have been paged out are permanently unrecoverable, because the decryption key is never known to you.

We created a temporary cgd with a random key when scrubbing the disk in the example above, using a
shorthand cgdconfig -s invocation to avoid creating a parameters file.

The cgdconfig params file includes a “randomkey” keygen method. This is more appropriate for
"permanent” random-key configurations, and facilitates the easy automatic configuration of these
volumes at boot time.

For example, if you wanted to convert your existing /dev/wd0b partition to a dedicated random-key
cgdl, use the following command to generate /etc/cgd/wdOb:

cgdconfig -g -o /etc/cgd/wd0b -V none -k randomkey blowfish-cbc

When using the randomkey keygen method, only verification method "none" can be used, because the
contents of the new cqgd are effectively random each time (the previous data decrypted with a random
key). Likewise, the new disk will not have a valid label or partitions, and swapctl will complain about
configuring swap devices not marked as such in a disklabel.

In order to automate the process of labeling the disk, prepare an appropriate disklabel and save it to a file,
for example /etc/cgd/wd0b.disklabel. Please refer to disklabel(8) for information about how to
use disklabel to set up a swap partition.

123

Chapter 14 The cryptographic device driver (CGD)

On each reboot, to restore this saved label to the new cgd, create the /etc/rc.conf.d/cgd file as
below:

swap_device="cgdl"
swap_disklabel="/etc/cgd/wd0b.disklabel"
start_postcmd="cgd_swap"

cgd_swap ()

{

if [—-f $swap_disklabel]; then
disklabel -R -r $swap_device $swap_disklabel
fi

}

The same technique could be extended to encompass using newfs to re-create an £ £s filesystem for
/tmp if you didn’t want to use mfs.

14.6.2 Warnings

Avoid data loss by making sure you can always recover your passphrase and parameters file. Protect the
parameters file from disclosure, perhaps by storing it on removable media as above, because the salt it
contains helps protect against dictionary attacks on the passphrase.

Keeping the data encrypted on your disk is all very well, but what about other copies? You already have
at least one other such copy (the backup we used during this setup), and it’s not encrypted. Piping dump
through file-based encryption tools like gpg can be one way of addressing this issue, but make sure you

have all the keys and tools you need to decrypt it to restore after a disaster.

Like any form of software encryption, the cgd key stays in kernel memory while the device is
configured, and may be accessible to privileged programs and users, such as /dev/kmem grovellers.
Taking other system security steps, such as running with elevated securelevel, is highly recommended.

Once the cgd volumes are mounted as normal filesystems, their contents are accessible like any other
file. Take care of file permissions and ensure your running system is protected against application and
network security attack.

Avoid using suspend/resume, especially for laptops with a BIOS suspend-to-disk function. If an attacker
can resume your laptop with the key still in memory, or read it from the suspend-to-disk memory image
on the hard disk later, the whole point of using cgd is lost.

14.7 Further Reading

The following resources contain more information on CGD and the cryptography underlying it:
Bibliography

I want my cgd (https://web.archive.org/web/20161225202034/http://genoverly.com/articles/5/) aka: 1
want an encrypted pseudo-device on my laptop.

124

Chapter 14 The cryptographic device driver (CGD)

Roland Dowdeswell and John Ioannidis, “The CryptoGraphic Disk Driver
(https://www.usenix.org/event/usenix03/tech/freenix03/full_papers/dowdeswell/dowdeswell.pdf)”,
Proceedings of the FREENIX Track: 2003 USENIX Annual Technical Conference, USENIX
Association, 179-186, June 9-14, 2003.

Feyrer Hubert, CryptoGraphicFile (CGF)
(http://www.feyrer.de/NetBSD/blog.html/mb_20060823_2311.html), or how to keep sensitive data
on your laptop.

Paul Crowley and Eric Biggers, “Adiantum: length-preserving encryption for entry-level processors
(https://doi.org/10.13154/tosc.v2018.14.39-61)”, Transactions on Symmetric Cryptology, 2018, 4,
International Association of Cryptologic Research, 39-61.

FIPS PUB 46-3: Data Encryption Standard (DES)
(https://csrc.nist.gov/publications/detail/fips/46/3/archive/1999-10-25), National Institute of
Standards and Technology, United States Department of Commerce, October 25, 1999, withdrawn
May 19, 2005.

FIPS PUB 197: Advanced Encryption Standard (DES)
(https://csrc.nist.gov/publications/detail/fips/197/final), National Institute of Standards and
Technology, United States Department of Commerce, November 2001.

Morris Dworkin, Recommendation for Block Cipher Modes of Operation: Methods and Techniques
(https://csrc.nist.gov/publications/detail/sp/800-38a/final), NIST Special Publication 800-38A,
National Institute of Standards and Technology, United States Department of Commerce,
December 2001.

Morris Dworkin, Recommendation for Block Cipher Modes of Operation: the XTS-AES Mode for
Confidentiality on Storage Devices (https.//csrc.nist.gov/publications/detail/sp/800-38e/final),
NIST Special Publication 800-38E, National Institute of Standards and Technology, United States
Department of Commerce, January 2010.

Bruce Schneier, The Blowfish Encryption Algorithm (https://www.schneier.com/academic/blowfish),
1993.

Karthikeyan Bhargavan and Gaétan Leurent, Sweet32: Birthday attacks on 64-bit block ciphers in TLS
and OpenVPN (https://sweet32.info).

125

Chapter 15
Concatenated Disk Device (CCD)
configuration

The CCD driver allows the user to “concatenate” several physical disks into one pseudo volume. While
RAIDframe (see Chapter 16) also allows doing this to create RAID level O sets, it does not allow you to
do striping across disks of different geometry, which is where CCD comes in handy. CCD also allows for
an “interleave” to improve disk performance with a gained space loss. This example will not cover that
feature.

The steps required to setup a CCD are as follows:

1. Install physical media

Configure kernel support

Disklabel each volume member of the CCD
Configure the CCD conf file

Initialize the CCD device

Create a filesystem on the new CCD device

N kR w D

Mount the CCD filesystem

This example features a CCD setup on NetBSD/sparc 1.5. The CCD will reside on 4 SCSI disks in a
generic external Sun disk pack chassis connected to the external 50 pin SCSI port.

15.1 Install physical media
This step is at your own discretion, depending on your platform and the hardware at your disposal.

From my DMESG:

Disk #1:
probe (esp0:0:0) : max sync rate 10.00MB/s
sd0 at scsibus0 target 0 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI2 0/direct fixed
sd0: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

Disk #2
probe (esp0:1:0) : max sync rate 10.00MB/s
sdl at scsibusO target 1 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444> SCSI2 0/direct fixed
sdl: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405 sectors

Disk #3
probe (esp0:2:0) : max sync rate 10.00MB/s

126

Chapter 15 Concatenated Disk Device (CCD) configuration

sd2 at scsibus0 target 2 lun 0: <SEAGATE, ST11200N SUN1.05, 9500> SCSI2 0/direct fixed
sd2: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

Disk #4
probe (esp0:3:0) : max sync rate 10.00MB/s
sd3 at scsibus0 target 3 lun 0: <SEAGATE, ST11200N SUN1.05, 8808 > SCSI2 0
sd3: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

15.2 Configure Kernel Support

The following kernel configuration directive is needed to provide CCD device support. It is enabled in
the GENERIC kernel:

pseudo-device «ccd 4 # concatenated disk devices

In my kernel config, I also hard code SCSI ID associations to /dev device entries to prevent bad things
from happening:

sdo0 at scsibusO target 0 lun ?
SCSI disk drives
sdl at scsibusO target 1 lun ?
SCSI disk drives
sd2 at scsibus0O target 2 lun ?
SCSI disk drives
sd3 at scsibus0O target 3 lun ?
SCSI disk drives
sd4 at scsibus0O target 4 lun ?
SCSI disk drives
sd5 at scsibus0O target 5 lun ?
SCSI disk drives
sd6 at scsibus0O target 6 lun ?
SCSI disk drives

15.3 Disklabel each volume member of the CCD

Each member disk of the CCD will need a special file system established. In this example, I will need to
disklabel:

/dev/rsdOc
/dev/rsdlc
/dev/rsd2c
/dev/rsd3c

Note: Always remember to disklabel the character device, not the block device, in /dev/r{s,w}dx

Note: On all platforms, the c slice is symbolic of the entire NetBSD partition and is reserved.

127

Chapter 15 Concatenated Disk Device (CCD) configuration

You will probably want to remove any pre-existing disklabels on the disks in the CCD. This can be

accomplished in one of two ways with the dd(1) command:

dd if=/dev/zero
dd if=/dev/zero
dd if=/dev/zero
dd if=/dev/zero

of=/dev/rsdOc bs=8k
of=/dev/rsdlc bs=8k
of=/dev/rsd2c bs=8k
of=/dev/rsd3c bs=8k

count=1
count=1
count=1

count=1

If your port uses a MBR (Master Boot Record) to partition the disks so that the NetBSD partitions are
only part of the overall disk, and other OSs like Windows or Linux use other parts, you can void the
MBR and all partitions on disk by using the command:

dd if=/dev/zero of=/dev/rsd0d bs=8k count=1
dd if=/dev/zero of=/dev/rsdld bs=8k count=1
dd if=/dev/zero of=/dev/rsd2d bs=8k count=1
dd if=/dev/zero of=/dev/rsd3d bs=8k count=1

This will make all data on the entire disk inaccessible. Note that the entire disk is slice d on i386 (and
some other ports), and c elsewhere (e.g. on sparc). See the “kern.rawpartition” sysctl - "3" means "d",
"2" means "c".

The default disklabel for the disk will look similar to this:

disklabel -r sdO
[...snip...]
bytes/sector: 512
sectors/track: 116
tracks/cylinder: 9
sectors/cylinder: 1044
cylinders: 3992

total sectors: 4197405

[..snip...]
3 partitions:
size offset fstype [fsize bsize cpgl
c: 4197405 0 unused 1024 8192 # (Cyl. 0 — 4020%)

You will need to create one “slice” on the NetBSD partition of the disk that consumes the entire partition.
The slice must begin at least one cylinder offset from the beginning of the disk/partition to provide space
for the special CCD disklabel. The offset should be 1x sectors/cylinder (see following note). Therefore,
the “size” value should be “total sectors” minus 1x “sectors/cylinder”. Edit your disklabel accordingly:

disklabel -e sdO

Note: The offset of a slice of type “ccd” must be a multiple of the “sectors/cylinder” value.

Note: Be sure to export EDITOR=[path to your favorite editor] before editing the disklabels.

Note: The slice must be fstype ccd.

128

Chapter 15 Concatenated Disk Device (CCD) configuration

Because there will only be one slice on this partition, you can recycle the c slice (normally reserved for
symbolic uses). Change your disklabel to the following:

3 partitions:
size offset fstype [fsize Dbsize cpyg]
c: 4196361 1044 ccd # (Cyl. 1 - 4020%)

Optionally you can setup a slice other than c to use, simply adjust accordingly below:

3 partitions:

size offset fstype [fsize Dbsize cpg]
a: 4196361 1044 ccd # (Cyl. 1 — 4020%)
c: 4197405 0 unused 1024 8192 # (Cyl. 0 - 4020%)

Be sure to write the label when you have completed. Disklabel will object to your disklabel and prompt
you to re-edit if it does not pass its sanity checks.

15.4 Configure the CCD

Once all disks are properly labeled, you will need to generate a configuration file, /etc/ccd.conf. The
file does not exist by default, and you will need to create a new one. The format is:

#ccd ileave flags component devices

Note: For the “ileave”, if a value of zero is used then the disks are concatenated, but if you use a
value equal to the “sectors/track” number the disks are interleaved.

Example in this case:

more /etc/ccd.conf
ccd0 0 none /dev/sdOc /dev/sdlc /dev/sd2c /dev/sd3c

Note: The CCD driver expects block device files as components. Be sure not to use character device
files in the configuration.

15.5 Initialize the CCD device

Once you are confident that your CCD configuration is sane, you can initialize the device using the
ccdconfig(8) command: Configure:

ccdconfig -C -f /etc/ccd.conf
Unconfigure:
ccdconfig -u -f /etc/ced.conf

Initializing the CCD device will activate /dev entries: /dev/{, r}ccd#:

129

Chapter 15 Concatenated Disk Device (CCD) configuration

1s -la /dev/{,r}ccdOx*

brw-r————- 1 root operator 9, 0 Apr 28 21:35 /dev/ccdOa
brw-r————-— 1 root operator 9, 1 Apr 28 21:35 /dev/ccdOb
brw-r—--——-—-— 1 root operator 9, 2 May 12 00:10 /dev/ccdOc
brw-r————- 1 root operator 9, 3 Apr 28 21:35 /dev/ccdOd
brw-r—-—-——-- 1 root operator 9, 4 Apr 28 21:35 /dev/ccdOe
brw-r————- 1 root operator 9, 5 Apr 28 21:35 /dev/ccdOf
brw-r—-———-— 1 root operator 9, 6 Apr 28 21:35 /dev/ccdOg
brw-r————- 1 root operator 9, 7 Apr 28 21:35 /dev/ccdOh
Crw—r———-—- 1 root operator 23, 0 Jun 12 20:40 /dev/rccdOa
Crw-r————-— 1 root operator 23, 1 Apr 28 21:35 /dev/rccdOb
crw-r————- 1 root operator 23, 2 Jun 12 20:58 /dev/rccdOc
Crw-r————-— 1 root operator 23, 3 Apr 28 21:35 /dev/rccdOd
Crw—r————-— 1 root operator 23, 4 Apr 28 21:35 /dev/rccdOe
Crw-r————-— 1 root operator 23, 5 Apr 28 21:35 /dev/rccdOf
Crw—r——-——-— 1 root operator 23, 6 Apr 28 21:35 /dev/rccdOg
Crw—-r————-— 1 root operator 23, 7 Apr 28 21:35 /dev/rccdOh

15.6 Create a 4.2BSD/UFS filesystem on the new CCD device

You may now disklabel the new virtual disk device associated with your CCD:
disklabel -e ccd0

Once again, there will be only one slice, so you may either recycle the c slice or create a separate slice
for use.

disklabel -r ccdO

/dev/rccdOc:

type: ccd

disk: ccd

label: default label

flags:

bytes/sector: 512

sectors/track: 2048

tracks/cylinder: 1

sectors/cylinder: 2048

cylinders: 6107

total sectors: 12508812

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: 0 # microseconds

track-to-track seek: 0 # microseconds

drivedata: O

size offset fstype [fsize bsize cpgl
c: 12508812 0 4.2BSD 1024 8192 16 # (Cyl. 0 — 6107x%)

The filesystem will then need to be formatted:

130

Chapter 15 Concatenated Disk Device (CCD) configuration

newfs /dev/rcecdOc

Warning: 372 sector(s) in last cylinder unallocated

/dev/rccdOc: 12508812 sectors in 6108 cylinders of 1 tracks, 2048 sectors
6107.8MB in 382 cyl groups (16 c/g, 16.00MB/g, 3968 i/g)

super-block backups (for fsck -b #) at:
[...]

15.7 Mount the filesystem

Once you have a created a file system on the CCD device, you can then mount the file system against a
mount point on your system. Be sure to mount the slice labeled type ££s or 4.2BSD:

mount /dev/ccdOc /mnt
Then:

export BLOCKSIZE=1024; df

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/sd6a 376155 320290 37057 89% /
/dev/ccdOc 6058800 1 5755859 0% /mnt

Congratulations, you now have a working CCD. To configure the CCD device at boot time, set ccd=yes
in /etc/rc.conf. You can adjust /etc/fstab to get the filesystem mounted at boot:

/dev/ccdOc /home ffs rw 12

131

Chapter 16
NetBSD RAIDframe

16.1 RAIDframe Introduction

16.1.1 About RAIDframe

NetBSD uses the CMU RAIDframe (http://www.pdl.cmu.edu/RAIDframe/) software for its RAID
subsystem. NetBSD is the primary platform for RAIDframe development. NetBSD also has another
in-kernel RAID level 0 system in its ccd(4) subsystem (see Chapter 15). You should possess some basic
knowledge (http://www.acnc.com/04_00.html) about RAID concepts and terminology before continuing.
You should also be at least familiar with the different levels of RAID - Adaptec provides an excellent
reference
(http://www.adaptec.com/en-US/_common/compatibility/_education/RAID_level_compar_wp.htm), and
the raid(4) manpage contains a short overview too.

16.1.2 A warning about Data Integrity, Backups, and High Availability

RAIDframe is a Software RAID implementation, as opposed to Hardware RAID. As such, it does not
need special disk controllers supported by NetBSD. System administrators should give a great deal of
consideration to whether software RAID or hardware RAID is more appropriate for their “Mission
Critical” applications. For some projects you might consider the use of many of the hardware RAID
devices supported by NetBSD (http://www.NetBSD.org/support/hardware/). It is truly at your discretion
what type of RAID you use, but it is recommend that you consider factors such as: manageability,
commercial vendor support, load-balancing and failover, etc.

Depending on the RAID level used, RAIDframe does provide redundancy in the event of a hardware
failure. However, it is not a replacement for reliable backups! Software and user-error can still cause data
loss. RAIDframe may be used as a mechanism for facilitating backups in systems without backup
hardware, but this is not an ideal configuration. Finally, with regard to "high availability", RAID is only a
very small component to ensuring data availability.

Once more for good measure: Back up your data!

16.1.3 Getting Help

If you encounter problems using RAIDframe, you have several options for obtaining help.

1. Read the RAIDframe man pages: raid(4) and raidctl(8) thoroughly.

2. Search the mailing list archives. Unfortunately, there is no NetBSD list dedicated to RAIDframe
support. Depending on the nature of the problem, posts tend to end up in a variety of lists. At a very

132

Chapter 16 NetBSD RAIDframe

minimum, search netbsd-users@NetBSD.org (http://mail-index.NetBSD.org/netbsd-users/),
current-users @ NetBSD.org (http://mail-index.NetBSD.org/current-users/). Also search the list for
the NetBSD platform on which you are using RAIDframe: port-$ {ARCH} @NetBSD.org.

3. Search the Problem Report database (http://www.NetBSD.org/support/send-pr.html).

4. If your problem persists: Post to the mailing list most appropriate (judgment call). Collect as much
verbosely detailed information as possible before posting: Include your dmesg(8) output from
/var/run/dmesg.boot, your kernel config(5) , your /etc/raid[0-9] .conf, any relevant
errors on /dev/console, /var/log/messages, or to stdout/stderr of raidctl(8). The output
of raidctl -s (if available) will be useful as well. Also include details on the troubleshooting steps
you’ve taken thus far, exactly when the problem started, and any notes on recent changes that may
have prompted the problem to develop. Remember to be patient when waiting for a response.

16.2 Setup RAIDframe Support

The use of RAID will require software and hardware configuration changes.

16.2.1 Kernel Support

The GENERIC kernel already has support for RAIDframe. If you have built a custom kernel for your
environment the kernel configuration must have the following options:

pseudo-device raid 8 # RAIDframe disk driver
options RAID_AUTOCONFIG # auto-configuration of RAID components

The RAID support must be detected by the NetBSD kernel, which can be checked by looking at the
output of the dmesg(8) command.

dmesg|grep -i raid
Kernelized RAIDframe activated

Historically, the kernel must also contain static mappings between bus addresses and device nodes in
/dev. This used to ensure consistency of devices within RAID sets in the event of a device failure after
reboot. Since NetBSD 1.6, however, using the auto-configuration features of RAIDframe has been
recommended over statically mapping devices. The auto-configuration features allow drives to move
around on the system, and RAIDframe will automatically determine which components belong to which
RAID sets.

16.2.2 Power Redundancy and Disk Caching

If your system has an Uninterruptible Power Supply (UPS), and/or if your system has redundant power
supplies, you should consider enabling the read and write caches on your drives. On systems with
redundant power, this will improve drive performance. On systems without redundant power, the write
cache could endanger the integrity of RAID data in the event of a power loss.

The dketl(8) utility can be used for this on all kinds of disks that support the operation (SCSI, EIDE,
SATA, ...):

133

Chapter 16 NetBSD RAIDframe

dkctl wd0 getcache

/dev/rwd0d: read cache enabled

/dev/rwd0d: read cache enable is not changeable
/dev/rwd0d: write cache enable is changeable
/dev/rwd0d: cache parameters are not savable

dkctl wd0 setcache rw

dkctl wd0 getcache

/dev/rwd0d: read cache enabled

/dev/rwd0d: write-back cache enabled
/dev/rwd0d: read cache enable is not changeable
/dev/rwd0d: write cache enable is changeable
/dev/rwd0d: cache parameters are not savable

16.3 Example: RAID-1 Root Disk

This example explains how to setup RAID-1 root disk. With RAID-1 components are mirrored and
therefore the server can be fully functional in the event of a single component failure. The goal is to
provide a level of redundancy that will allow the system to encounter a component failure on either
component disk in the RAID and:

+ Continue normal operations until a maintenance window can be scheduled.

« Or, in the unlikely event that the component failure causes a system reboot, be able to quickly
reconfigure the system to boot from the remaining component (platform dependent).

Figure 16-1. RAID-1 Disk Logical Layout

RAID-1 Pseudo Volume
/dev/{,r}raid[0-9]{c,d}

MIRROR

Because RAID-1 provides both redundancy and performance improvements, its most practical
application is on critical "system" partitions such as /, /usr, /var, swap, etc., where read operations are
more frequent than write operations. For other file systems, such as /home or /var/ (application},
other RAID levels might be considered (see the references above). If one were simply creating a generic
RAID-1 volume for a non-root file system, the cookie-cutter examples from the man page could be
followed, but because the root volume must be bootable, certain special steps must be taken during initial
setup.

Note: This example will outline a process that differs only slightly between the x86 and sparc64
platforms. In an attempt to reduce excessive duplication of content, where differences do exist and
are cosmetic in nature, they will be pointed out using a section such as this. If the process is
drastically different, the process will branch into separate, platform dependent steps.

134

Chapter 16 NetBSD RAIDframe

16.3.1 Pseudo-Process Outline

Although a much more refined process could be developed using a custom copy of NetBSD installed on
custom-developed removable media, presently the NetBSD install media lacks RAIDframe tools and
support, so the following pseudo process has become the de facto standard for setting up RAID-1 Root.

1. Install a stock NetBSD onto DiskO of your system.

Figure 16-2. Perform generic install onto Disk(0/wd0

Step 1.
Boot Disk = CD-ROM

Channel 0 Channel 0

Disk0 Diskl

2. Use the installed system on Disk0/wd0 to setup a RAID Set composed of Disk1l/wd1 only.

Figure 16-3. Setup RAID Set

Step 2
Boot Disk = Disk 0

co
0
Channel 0 |—
l |_ Bus 0

Channel 0

RAD-L

wdl/
Diskl

Component 1

Bootable RAIDFrame RAID-1
Volume w/ bogus Componento

3. Reboot the system off the Disk1/wd1 with the newly created RAID volume.

Figure 16-4. Reboot using Disk1/wd1 of RAID

Step 3
Boot Disk = Disk 1 system

Channel 0 Channel 0
|
us

8
Volume w/ bogus Componento

4. Add/re-sync DiskO/wd0 back into the RAID set.

135

Chapter 16 NetBSD RAIDframe

Figure 16-5. Mirror Disk1/wd1 back to Disk0/wd0

Disk 1

— 1
2| e
H
5 NE

Component 0| Component 1

Bootable RAIDFrame RAID-1
Volume w/ bogus Componento

16.3.2 Hardware Review

At present, the alpha, amd64, 1386, pmax, sparc, sparc64, and vax NetBSD platforms support booting
from RAID-1. Booting is not supported from any other RAID level. Booting from a RAID set is
accomplished by teaching the 1st stage boot loader to understand both 4.2BSD/FFS and RAID partitions.
The 1st boot block code only needs to know enough about the disk partitions and file systems to be able
to read the 2nd stage boot blocks. Therefore, at any time, the system’s BIOS / firmware must be able to
read a drive with 1st stage boot blocks installed. On the x86 platform, configuring this is entirely
dependent on the vendor of the controller card / host bus adapter to which your disks are connected. On
sparc64 this is controlled by the IEEE 1275 Sun OpenBoot Firmware.

This article assumes two identical IDE disks (/dev/wd {0, 1}) which we are going to mirror (RAID-1).
These disks are identified as:

grep “wd /var/run/dmesg.boot

wd0 at atabus0 drive 0: <WDC WD100BB-75CLBO>

wd0O: drive supports l6-sector PIO transfers, LBA addressing

wdO: 9541 MB, 19386 cyl, 16 head, 63 sec, 512 bytes/sect x 19541088 sectors

wd0: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 5 (Ultra/100)

wd0 (piixide0:0:0) : using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA data transfers)

wdl at atabusl drive 0: <WDC WD100BB-75CLBO>

wdl: drive supports l6-sector PIO transfers, LBA addressing

wdl: 9541 MB, 19386 cyl, 16 head, 63 sec, 512 bytes/sect x 19541088 sectors

wdl: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 5 (Ultra/100)

wdl (piixide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (Ultra/33) (using DMA data transfers)

Note: If you are using SCSI, replace /dev/{, r}wd{0,1} with /dev/{, r}sd{0,1}

In this example, both disks are jumpered as Master on separate channels on the same controller. You
would never want to have both disks on the same bus on the same controller; this creates a single point of
failure. Ideally you would have the disks on separate channels on separate controllers. Some SCSI
controllers have multiple channels on the same controller, however, a SCSI bus reset on one channel
could adversely affect the other channel if the ASIC/IC becomes overloaded. The trade-off with two

136

Chapter 16 NetBSD RAIDframe

controllers is that twice the bandwidth is used on the system bus. For purposes of simplification, this
example shows two disks on different channels on the same controller.

Note: RAIDframe requires that all components be of the same size. Actually, it will use the lowest
common denominator among components of dissimilar sizes. For purposes of illustration, the
example uses two disks of identical geometries. Also, consider the availability of replacement disks if
a component suffers a critical hardware failure.

Tip: Two disks of identical vendor model numbers could have different geometries if the drive
possesses "grown defects". Use a low-level program to examine the grown defects table of the disk.
These disks are obviously suboptimal candidates for use in RAID and should be avoided.

16.3.3 Initial Install on DiskQ/wd0

Perform a very generic installation onto your Disk0/wd0. Follow the INSTALL instructions for your
platform. Install all the sets but do not bother customizing anything other than the kernel as it will be
overwritten. See also Chapter 2.

Tip: On x86, during the sysinst install, when prompted if you want to "use the entire disk for
NetBSD", answer "yes".

Once the installation is complete, you should examine the disklabel(8) and fdisk(8) / sunlabel(8) outputs
on the system:

df

Filesystem 1K-blocks Used Avail %Cap Mounted on
/dev/wd0a 9487886 502132 8511360 s/

On x86:

disklabel -r wdoO

type: unknown

disk: Disk0O0

label:

flags:

bytes/sector: 512

sectors/track: 63

tracks/cylinder: 16

sectors/cylinder: 1008

cylinders: 19386

total sectors: 19541088

rpm: 3600

interleave: 1

trackskew: 0

cylinderskew: 0

headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: O

137

16 partitions:

Chapter 16 NetBSD RAIDframe

size offset fstype [fsize bsize cpg/sgs]
a: 19276992 63 4.2BSD 1024 8192 46568 # (Cyl Ox — 19124+%)
b: 264033 19277055 swap # (Cyl 19124 — 19385)
c: 19541025 63 unused 0 0 # (Cyl Ox — 19385)
d: 19541088 0 unused 0 0 # (Cyl 0 - 19385)
fdisk /dev/rwd0d
Disk: /dev/rwd0d
NetBSD disklabel disk geometry:
cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)
total sectors: 19541088
BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088
Partition table:
0: NetBSD (sysid 169)
start 63, size 19541025 (9542 MB, Cyls 0-1216/96/1), Active

1: <UNUSED>

2: <UNUSED>

3: <UNUSED>

Bootselector disabled.
First active partition: 0

On Sparc64 the command / output differs slightly:

disklabel -r wdoO

type: unknown

disk: DiskO0

[...snip...]

8 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 19278000 0 4.2BSD 1024 8192 46568 # (Cyl 0 -
b: 263088 19278000 swap # (Cyl 19125 -
c: 19541088 0 unused 0 0 # (Cyl 0 -
sunlabel /dev/rwdOc

sunlabel> P

a: start cyl = 0, size = 19278000 (19125/0/0 — 9413.09Mb)

b: start cyl = 19125, size = 263088 (261/0/0 - 128.461Mb)

c: start cyl = 0, size = 19541088 (19386/0/0 — 9541.55Mb)

16.3.4 Preparing Disk1/wd1

19124)
19385)
19385)

Once you have a stock install of NetBSD on Disk0/wd0, you are ready to begin. Disk1/wd1 will be
visible and unused by the system. To setup Disk1/wd1, you will use disklabel(8) to allocate the entire

second disk to the RAID-1 set.

138

Chapter 16 NetBSD RAIDframe

Tip: The best way to ensure that Disk1/wd1 is completely empty is to 'zero’ out the first few sectors
of the disk with dd(1) . This will erase the MBR (x86) or Sun disk label (sparc64), as well as the
NetBSD disk label. If you make a mistake at any point during the RAID setup process, you can
always refer to this process to restore the disk to an empty state.

Note: On sparc64, use /dev/rwdlc instead of /dev/rwdid!

dd if=/dev/zero of=/dev/rwdld bs=8k count=1

1+0 records in

1+0 records out

8192 bytes transferred in 0.003 secs (2730666 bytes/sec)

Once this is complete, on x86, verify that both the MBR and NetBSD disk labels are gone. On sparc64,
verify that the Sun Disk label is gone as well.

On x86:

fdisk /dev/rwdld

fdisk: primary partition table invalid, no magic in sector 0

Disk: /dev/rwdld

NetBSD disklabel disk geometry:

cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)
total sectors: 19541088

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088

Partition table:

0: <UNUSED>

1: <UNUSED>

2: <UNUSED>

3: <UNUSED>
Bootselector disabled.

disklabel -r wdl

[...snip...]
16 partitions:
size offset fstype [fsize bsize cpg/sgs]
c: 19541025 63 unused 0 0 # (Cyl. 0 — 19385)
d: 19541088 0 unused 0 0 # (Cyl. 0 - 19385)
On sparc64:

sunlabel /dev/rwdlc

sunlabel: bogus label on ‘/dev/wdlc’ (bad magic number)

disklabel -r wdl

139

Chapter 16 NetBSD RAIDframe

[...snip...]

3 partitions:

size offset fstype [fsize bsize cpg/sgs]

c: 19541088 0 unused 0 0 # (Cyl. 0 — 19385)

disklabel: boot block size 0
disklabel: super block size 0

Now that you are certain the second disk is empty, on x86 you must establish the MBR on the second
disk using the values obtained from DiskO/wd0 above. We must remember to mark the NetBSD partition
active or the system will not boot. You must also create a NetBSD disklabel on Disk1/wd1 that will
enable a RAID volume to exist upon it. On sparc64, you will need to simply disklabel(8) the second disk
which will write the proper Sun Disk Label.

Tip: disklabel(8) will use your shell’ s environment variable sEp1TOR Vvariable to edit the disklabel.
The default is vi(1)

On x86:

fdisk -Oua /dev/rwdld

fdisk: primary partition table invalid, no magic in sector 0

Disk: /dev/rwdld

NetBSD disklabel disk geometry:

cylinders: 19386, heads: 16, sectors/track: 63 (1008 sectors/cylinder)
total sectors: 19541088

BIOS disk geometry:
cylinders: 1023, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 19541088

Do you want to change our idea of what BIOS thinks? [n]

Partition O:

<UNUSED>

The data for partition 0 is:

<UNUSED>

sysid: [0..255 default: 169]

start: [0..1216cyl default: 63, Ocyl, OMB]

size: [0..1216cyl default: 19541025, 12l6cyl, 9542MB]
bootmenu: []

Do you want to change the active partition? [n] y
Choosing 4 will make no partition active.

active partition: [0..4 default: 0] O

Are you happy with this choice? [n] vy

We haven’t written the MBR back to disk yet. This is your last chance.
Partition table:
0: NetBSD (sysid 169)
start 63, size 19541025 (9542 MB, Cyls 0-1216/96/1), Active
1: <UNUSED>
: <UNUSED>
3: <UNUSED>

140

Chapter 16 NetBSD RAIDframe

Bootselector disabled.
Should we write new partition table? [n] y

disklabel -r -e -I wdl
type: unknown

disk: Diskl

label:

flags:

bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 19386

total sectors: 19541088

[...snip...]

16 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 19541025 63 RAID # (Cyl. 0x-19385)
c: 19541025 63 unused 0 0 # (Cyl. 0x-19385)
d: 19541088 0 unused 0 0 # (Cyl. 0 -19385)

On sparc64:

disklabel -r -e -I wdl

type: unknown

disk: Diskl

label:

flags:

bytes/sector: 512

sectors/track: 63

tracks/cylinder: 16

sectors/cylinder: 1008

cylinders: 19386

total sectors: 19541088

[...snip...]

3 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 19541088 0 RAID # (Cyl. 0 - 19385)
c: 19541088 0 unused 0 0 # (Cyl. 0 — 19385)

sunlabel /dev/rwdlc
sunlabel> P
a: start cyl = 0, size

19541088 (19386/0/0 - 9541.55Mb)
19541088 (19386/0/0 - 9541.55Mb)

c: start cyl 0, size

Note: On x86, the c¢: and d: slices are reserved. c: represents the NetBSD portion of the disk. d:
represents the entire disk. Because we want to allocate the entire NetBSD MBR partition to RAID,
and because a: resides within the bounds of c:, the a: and c: slices have same size and offset
values. The offset must start at a track boundary (an increment of sectors matching the sectors/track
value in the disk label). On sparc64 however, c: represents the entire NetBSD partition in the Sun
disk label and d: is not reserved. Also note that sparc64’s ¢: and a: require no offset from the

141

Chapter 16 NetBSD RAIDframe

beginning of the disk, however if they should need to be, the offset must start at a cylinder boundary
(an increment of sectors matching the sectors/cylinder value).

16.3.5 Initializing the RAID Device

Next we create the configuration file for the RAID set / volume. Traditionally, RAIDframe configuration
files belong in /etc and would be read and initialized at boot time, however, because we are creating a
bootable RAID volume, the configuration data will actually be written into the RAID volume using the
"auto-configure" feature. Therefore, files are needed only during the initial setup and should not reside in
/etc.

vi /var/tmp/raid0.conf
START array
120

START disks
absent
/dev/wdla

START layout
1281 11

START queue
fifo 100

Note that absent means a non-existing disk. This will allow us to establish the RAID volume with a
bogus component that we will substitute for DiskO/wdO0 at a later time.

Next we configure the RAID device and initialize the serial number to something unique. In this example
we use a "YYYYMMDDRevision" scheme. The format you choose is entirely at your discretion,
however the scheme you choose should ensure that no two RAID sets use the same serial number at the
same time.

After that we initialize the RAID set for the first time, safely ignoring the errors regarding the bogus
component.

raidctl -v -C /var/tmp/raid0O.conf raid0

Ignoring missing component at column 0

raid0: Component absent being configured at col: 0
Column: 0 Num Columns: O
Version: 0 Serial Number: 0 Mod Counter: 0
Clean: No Status: 0

Number of columns do not match for: absent

absent is not clean!

raid0: Component /dev/wdla being configured at col: 1
Column: 0 Num Columns: 0O
Version: 0 Serial Number: 0 Mod Counter: 0
Clean: No Status: 0

Column out of alignment for: /dev/wdla

Number of columns do not match for: /dev/wdla

/dev/wdla is not clean!

142

Chapter 16 NetBSD RAIDframe

*FAILED**] /dev/wdla

(9541 MB)

raid0: There were fatal errors
raid0: Fatal errors being ignored.
raid0: RAID Level 1

raid0: Components: componentO[=*
raid0: Total Sectors: 19540864

raidctl -v -I 2009122601 raidO

raidectl -v -i raidO

Initiating re-write of parity
raid0: Error re-writing parity!

Parity Re-write status:

tail -1 /var/log/messages
Dec 26 00:00:30 /netbsd:
raidectl -v -s raidO
Components:

raido

failed
optimal

componentO:
/dev/wdla:

No spares.
component(0 status is: failed.
Component label for /dev/wdla:
0, Column: 1,
Version: 2, Serial Number:
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1,
Queue size: 100, blocksize:
RAID Level: 1
Autoconfig: No
Root partition: No
Last configured as:
DIRTY
Reconstruction is 100% complete

Num Rows:
2

Row:

raido0

Parity status:

Error re-writing parity!

Skipping label.

2
Mod Counter:

1, Num Columns:

009122601, 7

1
numBlocks:

SUsPerRU:

512, 19540864

Parity Re-write is 100% complete.

Copyback is 100% complete.

16.3.6 Setting up Filesystems

The root filesystem must begin at sector 0 of the RAID device. Else, the primary
boot loader will be unable to find the secondary boot loader.

Caution

The RAID device is now configured and available. The RAID device is a pseudo disk-device. It will be
created with a default disk label. You must now determine the proper sizes for disklabel slices for your
production environment. For purposes of simplification in this example, our system will have 8.5
gigabytes dedicated to / as /dev/raid0a and the rest allocated to swap as /dev/raidOb.

143

Chapter 16 NetBSD RAIDframe

Caution

This is an unrealistic disk layout for a production server; the NetBSD Guide can
expand on proper partitioning technique. See Chapter 2

Note: Note that 1 GB is 2*1024*1024=2097152 blocks (1 block is 512 bytes, or 0.5 kilobytes).
Despite what the underlying hardware composing a RAID set is, the RAID pseudo disk will always
have 512 bytes/sector.

Note: In our example, the space allocated to the underlying a: slice composing the RAID set differed
between x86 and sparc64, therefore the total sectors of the RAID volumes differs:

On x86:

disklabel -r -e -I raidO
type: RAID
disk: raid
label: fictitious
flags:
bytes/sector: 512
sectors/track: 128
tracks/cylinder: 8
sectors/cylinder: 1024
cylinders: 19082
total sectors: 19540864
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: O

size offset fstype [fsize bsize cpg/sgs]
a: 19015680 0 4.2BSD 0 0 0 # (Cyl. 0 - 18569)
b: 525184 19015680 swap # (Cyl. 18570 - 19082%)
d: 19540864 0 unused 0 0 # (Cyl. 0 — 19082%)
On sparc64:
disklabel -r -e -I raidO
[...snip...]
total sectors: 19539968
[...snip...]
3 partitions:
size offset fstype [fsize bsize cpg/sgs]
a: 19251200 0 4.2BSD 0 0 0 # (Cyl. 0 - 18799)
b: 288768 19251200 swap # (Cyl. 18800 - 19081)
c: 19539968 0 unused 0 0 # (Cyl. 0 - 19081)

144

Chapter 16 NetBSD RAIDframe

Next, format the newly created / partition as a 4.2BSD FFSv1 File System:

newfs -0 1 /dev/rraidOa

/dev/rraidOa: 9285.0MB (19015680 sectors) block size 16384, fragment size 2048
using 51 cylinder groups of 182.06MB, 11652 blks, 23040 inodes.

super-block backups (for fsck -b #) at:

32, 372896, 745760, 1118624, 1491488, 1864352, 2237216, 2610080, 2982944,

fsck -fy /dev/rraidOa

**x /dev/rraidOa

% File system is already clean

*% Last Mounted on

*x Phase 1 - Check Blocks and Sizes
** Phase — Check Pathnames
*x Phase — Check Connectivity
*% Phase

1 files,

— Check Cyl groups

2
3
** Phase 4 - Check Reference Counts
5
1 used, 4679654 free (14 frags, 584955 blocks, 0.0% fragmentation)

16.3.7 Migrating System to RAID

The new RAID filesystems are now ready for use. We mount them under /mnt and copy all files from
the old system. This can be done using dump(8) or pax(1).

mount /dev/raidOa /mnt
df -h /mnt

Filesystem Size Used Avail %Cap Mounted on
/dev/raid0a 8.9G 2.0K 8.5G 0% /mnt

ed /; pax -v =X -rw -pe . /mnt

[...snip...]

The NetBSD install now exists on the RAID filesystem. We need to fix the mount-points in the new copy
of /etc/fstab or the system will not come up correctly. Replace instances of wd0 with raido.

The swap should be unconfigured upon shutdown to avoid parity errors on the RAID device. This can be
done with a simple, one-line setting in /etc/rc.conf.

vi /mnt/etc/rc.conf
swapoff=YES

Next the boot loader must be installed on Disk1/wd1. Failure to install the loader on Disk1/wd1 will
render the system un-bootable if DiskO/wdO0 fails making the RAID-1 pointless.

Tip: Because the BIOS/CMOS menus in many x86 based systems are misleading with regard to
device boot order. | highly recommend utilizing the "-o timeout=X" option supported by the x86 1st
stage boot loader. Setup unique values for each disk as a point of reference so that you can easily
determine from which disk the system is booting.

145

Chapter 16 NetBSD RAIDframe

Caution

Although it may seem logical to install the 1st stage boot block into

/dev/rwdl (c, d} with installboot(8) , this is no longer the case since NetBSD 1.6.x.
If you make this mistake, the boot sector will become irrecoverably damaged and
you will need to start the process over again.

On x86, install the boot loader into /dev/rwdla :

/usr/sbin/installboot -o timeout=30 -v /dev/rwdla /usr/mdec/bootxx_ffsv2
File system: /dev/rwdla

Primary bootstrap: /usr/mdec/bootxx_ffsv2

Ignoring PBR with invalid magic in sector 0 of ‘/dev/rwdla’

Boot options: timeout 30, flags 0, speed 9600, ioaddr 0, console pc

Note: As of NetBSD 6.x, the default filesystem type on x86 platforms is FFSv2 instead of FFSv1.
Make sure you use the correct 1st stage boot block file /usr/mdec/bootxx_ffsv(1,2} when running
the installboot(8) command.

To find out which filesystem type is currently in use, the command file(1) or dumpfs(8) can be used:

/usr/bin/file -s /dev/rwdla
/usr/bin/file -s /dev/rwdla
/dev/rwdla: Unix Fast File system [v2] (little-endian), last mounted on ...

or

/usr/sbin/dumpfs -s /dev/rwdla
file system: /dev/rwdla

format FFSv2

endian little-endian

On sparc64, install the boot loader into /dev/rwdla as well, however the "-0" flag is unsupported (and
un-needed thanks to OpenBoot):

/usr/sbin/installboot -v /dev/rwdla /usr/mdec/bootblk
File system: /dev/rwdla

Primary bootstrap: /usr/mdec/bootblk

Bootstrap start sector: 1

Bootstrap byte count: 5140

Writing bootstrap

Finally the RAID set must be made auto-configurable and the system should be rebooted. After the
reboot everything is mounted from the RAID devices.

raidectl -v -A root raidO

raid0: Autoconfigure: Yes

raid0: Root: Yes

tail -2 /var/log/messages

raid0: New autoconfig value is: 1
raid0: New rootpartition value is: 1

146

Chapter 16 NetBSD RAIDframe

raidctl -v -s raidO
[...snip...]

Autoconfig: Yes

Root partition: Yes

Last configured as: raidO
[...snip...]
shutdown -r now

Warning

Always use shutdown(8) when shutting down. Never simply use reboot(8).
reboot(8) will not properly run shutdown RC scripts and will not safely disable
swap. This will cause dirty parity at every reboot.

16.3.8 The first boot with RAID

At this point, temporarily configure your system to boot Disk1/wd1. See notes in Section 16.3.10 for
details on this process. The system should boot now and all filesystems should be on the RAID devices.
The RAID will be functional with a single component, however the set is not fully functional because the
bogus drive (wd9) has failed.

egrep —-i "raid|root" /var/run/dmesg.boot

raid0: RAID Level 1

raid0: Components: componentO[+*+*FAILEDx*] /dev/wdla
raidO: Total Sectors: 19540864 (9541 MB)

boot device: raidO

root on raidOa dumps on raidOb

root file system type: ffs

df -h

Filesystem Size Used Avail Capacity Mounted on
/dev/raidOa 8.9G 196M 8.3G 2% /

kernfs 1.0K 1.0K 0B 100% /kern

swapctl -1

Device 1K-blocks Used Avail Capacity Priority
/dev/raidOb 262592 0 262592 0% 0

raidectl -s raidO

Components:

componentO: failed
/dev/wdla: optimal
No spares.
component0 status is: failed. Skipping label.
Component label for /dev/wdla:
Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2009122601, Mod Counter: 65
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1

147

Chapter 16 NetBSD RAIDframe

Autoconfig: Yes

Root partition: Yes

Last configured as: raidO
Parity status: DIRTY
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

16.3.9 Adding DiskO/wd0 to RAID

We will now add DiskO/wd0 as a component of the RAID. This will destroy the original file system
structure. On x86, the MBR disklabel will be unaffected (remember we copied wd0’s label to wdl
anyway) , therefore there is no need to "zero" DiskO/wd0. However, we need to relabel Disk0/wd0 to
have an identical NetBSD disklabel layout as Disk1/wd1. Then we add DiskO/wdO as "hot-spare"” to the
RAID set and initiate the parity reconstruction for all RAID devices, effectively bringing DiskO/wdO0 into
the RAID-1 set and "synching up" both disks.

disklabel -r wdl > /tmp/disklabel.wdl
disklabel -R -r wdO /tmp/disklabel.wdl

As a last-minute sanity check, you might want to use diff(1) to ensure that the disklabels of DiskO/wdO
match Diskl/wd1. You should also backup these files for reference in the event of an emergency.

disklabel -r wd0 > /tmp/disklabel.wd0
disklabel -r wdl > /tmp/disklabel.wdl

diff /tmp/disklabel.wd0 /tmp/disklabel.wdl
fdisk /dev/rwd0 > /tmp/fdisk.wdO

fdisk /dev/rwdl > /tmp/fdisk.wdl

diff /tmp/fdisk.wd0 /tmp/fdisk.wdl

mkdir /root/RFbackup

cp -p /tmp/{disklabel, fdisk}* /root/RFbackup

HH H H = o FH H

Once you are certain, add Disk0/wd0 as a spare component, and start reconstruction:

raidectl -v -a /dev/wdOa raidO
/netbsd: Warning: truncating spare disk /dev/wd0Oa to 241254528 blocks
raidctl -v -s raidO
Components:
componentO: failed

/dev/wdla: optimal
Spares:

/dev/wd0a: spare
[...snip...]
raidctl -F component0 raidO
RECON: initiating reconstruction on col 0 —-> spare at col 2
11% | **x** | ETA: 04:26 \

Depending on the speed of your hardware, the reconstruction time will vary. You may wish to watch it on
another terminal:

raidectl -S raidoO

148

Chapter 16 NetBSD RAIDframe

Reconstruction is 0% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.
Reconstruction status:
17% | x*x**x* | ETA: 03:08 -

After reconstruction, both disks should be “optimal”.

tail -f /var/log/messages

raid0: Reconstruction of disk at col 0 completed

raidO: Recon time was 1290.625033 seconds, accumulated XOR time was 0 us (0.000000)
raidO: (start time 1093407069 sec 145393 usec, end time 1093408359 sec 770426 usec)
raid0: Total head-sep stall count was 0

raid0: 305318 recon event waits, 1 recon delays

raid0: 1093407069060000 max exec ticks

raidectl -v -s raidO
Components:
component0: spared
/dev/wdla: optimal
Spares:
/dev/wdOa: used_spare
[...snip...]

‘When the reconstruction is finished we need to install the boot loader on the DiskO/wd0. On x86, install
the boot loader into /dev/rwd0Oa:

/usr/sbin/installboot -o timeout=15 -v /dev/rwd0a /usr/mdec/bootxx ffsv2
File system: /dev/rwdOa

Primary bootstrap: /usr/mdec/bootxx_ffsv2

Boot options: timeout 15, flags 0, speed 9600, ioaddr 0, console pc
On sparc64:

/usr/sbin/installboot -v /dev/rwdOa /usr/mdec/bootblk

File system: /dev/rwd0Oa

Primary bootstrap: /usr/mdec/bootblk

Bootstrap start sector: 1

Bootstrap byte count: 5140

Writing bootstrap

And finally, reboot the machine one last time before proceeding. This is required to migrate DiskO/wd0
from status "used_spare" as "Component0Q" to state "optimal". Refer to notes in the next section
regarding verification of clean parity after each reboot.

shutdown —-r now

16.3.10 Testing Boot Blocks

At this point, you need to ensure that your system’s hardware can properly boot using the boot blocks on
either disk. On x86, this is a hardware-dependent process that may be done via your motherboard
CMOS/BIOS menu or your controller card’s configuration menu.

149

Chapter 16 NetBSD RAIDframe

On x86, use the menu system on your machine to set the boot device order / priority to Disk1/wd1 before
Disk0/wd0. The examples here depict a generic Award BIOS.

Figure 16-6. Award BIOS i386 Boot Disk1/wd1

ROM PCI/ISA BIOS (2A6IKD4F)
BIOS FEATURES SETUP
AUARD SOFTUARE, INC.

Uirus Warning : Disabled
CPU L1 Cache g
CPU L2 Cache

CPU L2 Cache ECC Checking

Quick Pouer On Self Test

Boot Sequence

Suap Floppy Drive

Boot Up Flappy Seek

Boot Up NumLock Status
Tupenatic Rate Setting
Tupenatic Rate (Chars/Sec) : 30
Typenatic Delay (Msec) 2
Security Option

PCI/UGA Palette Snoop

0S Select For DRAM > 64MB :

HDD S.M.A.R.T. Capability : Enabled

ad Optimal Settings

Save changes and exit.

>> NetBSD/1386 BIOS Boot, Revision 5.2
>> (builds@b7, Sun Feb 7 00:30:50 UTC
>> Memory: 639/130048 k

(from NetBSD 5.0.2)
2010)

Press return to boot now, any other key for boot menu

booting hdOa:netbsd - starting in 30

You can determine that the BIOS is reading Disk1/wd1 because the timeout of the boot loader is 30
seconds instead of 15. After the reboot, re-enter the BIOS and configure the drive boot order back to the

default:

Figure 16-7. Award BIOS i386 Boot Disk0/wd0

ROM PCI/ISA BIOS (2A6IKD4F)
BIOS FEATURES SETUP
AUARD SOFTUARE, INC.

Uirus Warning : Disabled
CPU L1 Cache

CPU L2 Cache

CPU L2 Cache ECC Checking :

Quick Pouer On Self Test

Boot Sequence

Suap Floppy Drive

Boot Up Flappy Seek

Boot Up NumLock Status

Tupenatic Rate Setting

Tupenatic Rate (Chars/Sec) : 30
Typenatic Delay (Msec) 2
Security Option

PCI/UGA Palette Snoop

0S Select For DRAM > 64MB :

HDD S.M.A.R.T. Capability : Enabled

: Load Optimal Settings

Save changes and exit.

>> NetBSD/x86 BIOS Boot, Revision 5.9
>> Memory: 640/261120 k

1. Boot normally

2. Boot single use

3. Disable ACPI

4. Disable ACPI and SMP
5. Drop to boot prompt

Choose an option; RETURN for default;

(from NetBSD 6.0)

SPACE to stop countdown.Option 1 will be chosen in 0

150

Chapter 16 NetBSD RAIDframe

Notice how your custom kernel detects controller/bus/drive assignments independent of what the BIOS
assigns as the boot disk. This is the expected behavior.

On sparc64, use the Sun OpenBoot devalias to confirm that both disks are bootable:

Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 400MHz), No Keyboard
OpenBoot 3.15, 128 MB memory installed, Serial #nnnnnnnn.
Ethernet address 8:0:20:a5:d1:3b, Host ID: nnnnnnnn.

ok devalias

[...snip...]

cdrom /pci@lf,0/pci@l,1/ide@3/cdrom@2,0:f
disk /pci@lf,0/pci@l,1/ide@3/disk@0,0
disk3 /pci@lf,0/pci@l,1/ide@3/disk@3,0
disk2 /pci@lf,0/pci@l,1/ide@3/disk@2,0
diskl /pci@lf,0/pci@l,1/ide@3/disk@1,0
disk0 /pci@lf,0/pci@l,1/ide@3/disk@0,0
[...snip...]

ok boot disk0O netbsd
Initializing Memory [...]
Boot device /pci/pci/ide@3/disk@0,0 File and args: netbsd
NetBSD IEEE 1275 Bootblock
>> NetBSD/sparc64 OpenFirmware Boot, Revision 1.13
>> (builds@b7.netbsd.org, Wed Jul 29 23:43:42 UTC 2009)
loadfile: reading header
elf64_exec: Booting [...]
symbols @ [....]
Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009
The NetBSD Foundation, Inc. All rights reserved.
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.
[...snip...]

And the second disk:

ok boot disk2 netbsd
Initializing Memory [...]
Boot device /pci/pci/ide@3/disk@2,0: File and args:netbsd
NetBSD IEEE 1275 Bootblock
>> NetBSD/sparc64 OpenFirmware Boot, Revision 1.13
>> (builds@b7.netbsd.org, Wed Jul 29 23:43:42 UTC 2009)
loadfile: reading header
elf64_exec: Booting [...]
symbols @ [....]
Copyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2006, 2007, 2008, 2009
The NetBSD Foundation, Inc. All rights reserved.
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.
[...snip...]

At each boot, the following should appear in the NetBSD kernel dmesg(8) :

151

Chapter 16 NetBSD RAIDframe

Kernelized RAIDframe activated

raid0: RAID Level 1

raid0: Components: /dev/wdOa /dev/wdla
raidO: Total Sectors: 19540864 (9541 MB)
boot device: raidO

root on raidOa dumps on raidOb

root file system type: ffs

Once you are certain that both disks are bootable, verify the RAID parity is clean after each reboot:

raidctl -v -s raidO
Components:
/dev/wd0a: optimal
/dev/wdla: optimal
No spares.
[...snip...]
Component label for /dev/wdOa:
Row: 0, Column: 0, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2009122601, Mod Counter: 67
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: Yes
Root partition: Yes
Last configured as: raid0
Component label for /dev/wdla:
Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2009122601, Mod Counter: 67
Clean: No, Status: 0
sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1
Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1
Autoconfig: Yes
Root partition: Yes
Last configured as: raidO
Parity status: clean
Reconstruction is 100% complete.
Parity Re-write is 100% complete.
Copyback is 100% complete.

152

Chapter 17
NetBSD Logical Volume Manager
(LVM) configuration

NetBSD LVM allows logical volume management on NetBSD systems, with a well known user
interface, which is the same as the Linux LVM2 tools.

NetBSD LVM is built on Linux lvm2tools and libdevmapper, together with a BSD-licensed
device-mapper kernel driver specially written for NetBSD.

The LVM driver allows the user to manage available disk space effectively and efficiently. Disk space
from several disks, and partitions, known as “Physical Volumes”, can be added to “Volume Groups”,
which is the pool of available disk space for “Logical Partitions” aka Logical Volumes.

Logical Volumes can be grown and shrunk at will using the LVM utilities.

The basic building block is the Physical Volume. This is a disk, or a part of a disk, which is used to store
data.

Physical Volumes are aggregated together to make Volume Groups, or VGs. Typically, Volume Groups
are used to aggregate storage for the same functional unit. Typical Volume Groups could thus be named
“Audio”, “Multimedia” or “Documents”. By segregating storage requirements in this functional way, the
same type of resilience and redundancy is applied to the whole of the functional unit.

The steps required to setup a LVM are as follows:

1. Install physical media
Configure kernel support

Configure system, install tools

S

Optional step

Disklabel each volume member of the LVM
Initialize the LVM disk devices

Create a volume group from initialized disks
Create Logical volume from created Volume group

Create a filesystem on the new LV device

A A AN

Mount the LV filesystem

This example features a LVM setup on NetBSD/i386.

153

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

17.1 Anatomy of NetBSD Logical Volume Manager

Figure 17-1. Anatomy of Logical Volume Management

Volume Group VG 0

PV O PE PE PE PE PE PE PE

Lvo | LE | LE | LE | LE | LE | LE | LE

pvi | PE | PE | PE | PE | PE | PE | PE

1. Volume Group

The Volume Group is a disk space pool from which the user creates Logical Volumes and to which
Physical Volumes can be added. It is the basic administration unit of the NetBSD LVM
implementation.

2. Physical Volume

A physical volume is the basic unit in a LVM structure. Every PV consists of small disk space
chunks called Physical Extends. Every Volume Group must have at least one PV. A PV can be
created on hard disks or hard disk like devices such as raid, ccd, or cgd device.

3. Logical Volume

The Logical Volume is a logical partition created from disk space assigned to the Volume Group. LV
can be newfsed and mounted as any other pseudo-disk device. Lvm tools use functionality exported
by the device-mapper driver in the kernel to create the LV.

4. Physical Extents

Each physical volume is divided chunks of disk space. The default size is 4MB. Every LV size is
rounded by PE size. The LV is created by mapping Logical Extends in the LV to Physical extends in
a Volume group.

154

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

5. Logical Extents

Each logical volume is split into chunks of disk space, known as logical extents. The extent size is
the same for all logical volumes in the volume group.

6. Physical Extents mapping

Every LV consists of “LEs” mapped to “PEs” mapped by a target mapping. Currently, the following
mappings are defined.

+ Linear Mapping
will linearly assign range of PEs to LEs.

For example it can map 100 PEs from PV 1 to LV 1 and
another 100 PEs from PV 0.
+ Stripe Mapping

will interleave the chunks of the logical extents across a number of physical volumes.

7. Snapshots

A facility provided by LVM is ’snapshots’. Whilst in standard NetBSD, the “fss” driver can be used
to provide filesystem snapshots at a filesystem level, the snapshot facility in the LVM allows the
administrator to create a logical block device which presents an exact copy of a logical volume,
frozen at some point in time. This facility does require that the snapshot be made at a time when the
data on the logical volume is in a consistent state.

Warning

Snapshot feature is not fully implemented in LVM in NetBSD and should
not be used in production.

17.2 Install physical media

This step is at your own discretion, depending on your platform and the hardware at your disposal. LVM
can be used with disklabel partitions or even with standard partitions created with fdisk.

From my “dmesg”:

Disk #1:
probe (esp0:0:0) : max sync rate 10.00MB/s
sd0 at scsibus0O0 target 0 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444>
sd0: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405

Disk #2

probe (esp0:1:0) : max sync rate 10.00MB/s

sdl at scsibus0O target 1 lun 0: <SEAGATE, ST32430N SUN2.1G, 0444>
sdl: 2049 MB, 3992 cyl, 9 head, 116 sec, 512 bytes/sect x 4197405

Disk #3
probe (esp0:2:0) : max sync rate 10.00MB/s

155

SCSI2 0/direc
sectors

SCSI2 0/direc
sectors

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

sd2 at scsibus0 target 2 lun 0: <SEAGATE, ST11200N SUN1.05, 9500> SCSI2 0/direc
sd2: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

Disk #4

probe (esp0:3:0) : max sync rate 10.00MB/s

sd3 at scsibus0 target 3 lun 0: <SEAGATE, ST11200N SUN1.05, 8808 > SCSI2 0
sd3: 1005 MB, 1872 cyl, 15 head, 73 sec, 512 bytes/sect x 2059140 sectors

17.3 Configure Kernel Support

The following kernel configuration directive is needed to provide LVM device support. It is provided as a
kernel module, so that no extra modifications need be made to a standard NetBSD kernel.

pseudo-device dm

If you do not want to rebuild your kernel only because of LVM support you can use dm kernel module.
The devmapper kernel module can be loaded on your system. To get the current status of modules in the
kernel, the modstat is used:

vml# modstat

NAME CLASS SOURCE REFS SIZE REQUIRES
cd9660 vfs filesys O 21442 -
coredump misc filesys 1 2814 -
exec_elf32 misc filesys 0 6713 coredump
exec_script misc filesys 0 1091 -
ffs vfs boot 0 163040 -
kernfs vfs filesys 0 10201 -
ptyfs vis filesys O 7852 -

When the modload dm is issued, the dm kernel module will be loaded:

vml# modstat

NAME CLASS SOURCE REFS SIZE REQUIRES
cd9660 vfs filesys O 21442 -
coredump misc filesys 1 2814 -
dm misc filesys O 14448 -
exec_elf32 misc filesys O 6713 coredump
exec_script misc filesys 0 1091 -
ffs vfs boot 0 163040 -
kernfs vfs filesys O 10201 -
ptyfs vfs filesys 0 7852 -

17.4 Disklabel each physical volume member of the LVM

Each physical volume disk in LVM will need a special filesystem established. In this example, I will
need to disklabel:

/dev/rsd0d

156

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

/dev/rsdld
/dev/rsd2d
/dev/rsd3d

It should be borne in mind that it is possible to use the NetBSD vnd driver to make standard filesystem
space appear in the system as a disk device.

Note: Always remember to disklabel the character device, not the block device, in /dev/r{s,w}dx

Note: On all platforms except amd64 and i386 where the d partition is used for this, the c slice is
symbolic of the entire NetBSD partition and is reserved.

You will probably want to remove any pre-existing disklabels on the physical volume disks in the LVM.
This can be accomplished in one of two ways with the dd(1) command:

dd if=/dev/zero of=/dev/rsd0d bs=8k count=1
dd if=/dev/zero of=/dev/rsdld bs=8k count=1
dd if=/dev/zero of=/dev/rsd2d bs=8k count=1
dd if=/dev/zero of=/dev/rsd3d bs=8k count=1

If your port uses a MBR (Master Boot Record) to partition the disks so that the NetBSD partitions are
only part of the overall disk, and other OSs like Windows or Linux use other parts, you can void the
MBR and all partitions on disk by using the command:

dd if=/dev/zero of=/dev/rsd0d bs=8k count=1
dd if=/dev/zero of=/dev/rsdld bs=8k count=1
dd if=/dev/zero of=/dev/rsd2d bs=8k count=1
dd if=/dev/zero of=/dev/rsd3d bs=8k count=1

This will make all data on the entire disk inaccessible. Note that the entire disk is slice d on i386 (and
some other ports), and c elsewhere (e.g. on sparc). See the “kern.rawpartition” sysctl - "3" means "d",
"2" means ”C".

The default disklabel for the disk will look similar to this:

disklabel -r sdO
[...snip...]
bytes/sector: 512
sectors/track: 63
tracks/cylinder: 16
sectors/cylinder: 1008
cylinders: 207
total sectors: 208896
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: O # microseconds
track-to-track seek: 0 # microseconds

157

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration
drivedata: 0

4 partitions:

size offset fstype [fsize bsize cpg/sgs]
a: 208896 0 4.2BSD 0 0 0 # (Cyl. 0 - 207%*)
d: 208896 0 unused 0 0 # (Cyl. 0 - 207 %)

You will need to create one “slice” on the NetBSD partition of the disk that consumes the entire partition.
The slice must begin at least two sectors after end of disklabel part of disk. On 1386 it is sector “63”.
Therefore, the “size” value should be “total sectors” minus 2x “sectors”. Edit your disklabel accordingly:

disklabel -e sdO

Note: The offset of a slice of type “4.2BSD” must be a multiple of the “sectors” value.

Note: Be sure to export EDITOR=[path to your favorite editor] before editing the disklabels.

Note: The slice must be fstype 4.2Bsp.

Because there will only be one slice on this partition, you can recycle the d slice (normally reserved for
symbolic uses). Change your disklabel to the following:

3 partitions:
size offset fstype [fsize Dbsize cpg]
d: 4197403 65 4.2BSD # (Cyl. 1 - 4020%)

Optionally you can setup a slice other than d to use, simply adjust accordingly below:

3 partitions:

size offset fstype [fsize bsize cpg]
a: 4197403 65 4.2BSD # (Cyl. 1 — 4020%)
4197405 0 unused 1024 8192 # (Cyl. 0 — 4020%)

Be sure to write the label when you have completed. Disklabel will object to your disklabel and prompt
you to re-edit if it does not pass its sanity checks.

17.5 Create Physical Volumes

Once all disks are properly labeled, you will need to create physical volume on them. Every
partition/disk added to LVM must have physical volume header on start of it. All informations, like
Volume group where Physical volume belongs are stored in this header.

lvm pvcreate /dev/rwdl[ad]

Status of physical volume can be viewed with pvdisplay command.

158

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

lvm pvdisplay

17.6 Create Volume Group

Once all disks are properly labeled with physical volume header, volume group must be created from
them. Volume Group is pool of PEs from which administrator can create Logical Volumes “partitions”.

lvm vgcreate vg0 /dev/rwdl[ad]

« vg0 is name of Volume Group
+ /dev/rwdl[ad] is Physical Volume

Volume group can be later extended/reduced with vgextend and vgreduce commands. These commands
adds physical volumes to VG.

lvm vgextend vg0 /dev/rwdl[ad]

lvm vgreduce vg0 /dev/rwdl[ad]

Status of Volume group can be viewed with vgdisplay command.

lvm vgdisplay vgO

17.7 Create Logical Volume

Once Volume Group was created administrator can create “logical partitions” volumes.

lvm lvcreate -L 20M -n 1lv1l vgO0

« vg0 is name of Volume Group
« -L 20M is size of Logical Volume
« -nlvl is name of Logical Volume

Logical Volume can be later extended/reduced with lvextend and lvreduce commands.

lvm lvextend -L+20M /dev/vg0/1lvl

lvm lvreduce -L-20M /dev/vg0/1lvl

159

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

Note: To shrink the Iv partition, you must first shrink the filesystem using resize_ffs(8) (which as of
NetBSD 9.0 does not support shrinking of FFSv2 yet).

Status of Logical Volume can be viewed with Ivdisplay command.

lvm lvdisplay 1lv0/1lvl

After reboot all functional LV’s in defined Volume group can be activated with command

lvm vgchange -a y

17.8 Example: LVM with Volume groups located on raid1

Motivation for using raid 1 disk as physical volume disk for Volume Group is disk reliability. With PV
on raid 1 disk it is possible to use Logical Volumes even after disk failure.

17.8.1 Loading Device-Mapper driver

Before we can start work with the LVM tools. We have to be sure that NetBSD dm driver was properly
compiled into the kernel or loaded as a module. Easiest way how to find if we have dm driver available is
run modstat. For more information see Configure Kernel Support chapter.

17.8.2 Preparing raid1 installation

Following example raid configuration defined in Raid 1 configuration user will set up clean raid1 disk
device. With 2 disks in a mirror mode.

Figure 17-2. Example raid 1 configuration

vi /var/tmp/raid0.conf
START array
120

START disks
/dev/wd2a
/dev/wdla

START layout
12811 1

START queue

fifo 100

raidectl -v -C /var/tmp/raidO.conf raidO

raid0: Component /dev/wdla being configured at col: 0
Column: 0 Num Columns: 0

Version: 0 Serial Number: 0 Mod Counter: 0

Clean: No Status: 0

160

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

Column out of alignment for: /dev/wd2a

Number of columns do not match for: /dev/wd2a
/dev/wd2a is not clean!

raid0: Component /dev/wdla being configured at col: 1
Column: 0 Num Columns: O

Version: 0 Serial Number: 0 Mod Counter: 0
Clean: No Status: 0

Column out of alignment for: /dev/wdla

Number of columns do not match for: /dev/wdla
/dev/wdla is not clean!

raid0: There were fatal errors

raid0: Fatal errors being ignored.

raid0: RAID Level 1

raidO: Components: /dev/wd2a /dev/wdla

raidO: Total Sectors: 19540864 (9541 MB)

raidetl -v -I 2004082401 raidO

raidctl -v -i raidO

Initiating re-write of parity

tail -1 /var/log/messages

raid0: Error re-writing parity!

raidctl -v -s raidO

Components:

/dev/wd2a: optimal

/dev/wdla: optimal

No spares.

Component label for /dev/wdla:

Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 7
Clean: No, Status: 0

sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1

Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1

Autoconfig: No

Root partition: No

Last configured as: raid0

Parity status: DIRTY

Reconstruction is 100% complete.

Parity Re-write is 100% complete.

Copyback is 100% complete.

Component label for /dev/wd2a:

Row: 0, Column: 1, Num Rows: 1, Num Columns: 2
Version: 2, Serial Number: 2004082401, Mod Counter: 7
Clean: No, Status: 0

sectPerSU: 128, SUsPerPU: 1, SUsPerRU: 1

Queue size: 100, blocksize: 512, numBlocks: 19540864
RAID Level: 1

Autoconfig: No

Root partition: No

Last configured as: raid0

Parity status: DIRTY

Reconstruction is 100% complete.

Parity Re-write is 100% complete.

Copyback is 100% complete.

161

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

After setting up raid we need to create disklabel on raid disk.

On 1386:

disklabel -r —-e -I raidO
type: RAID
disk: raid

label: fictitious

flags:
bytes/sector: 512
sectors/track: 128
tracks/cylinder: 8
sectors/cylinder: 1024
cylinders: 19082
total sectors: 19540864
rpm: 3600
interleave: 1
trackskew: 0
cylinderskew: 0
headswitch: 0 # microseconds
track-to-track seek: 0 # microseconds
drivedata: 0

size offset fstype [fsize bsize cpg/sgs]

a: 19540789 65 4.2BSD 0 0 0 # (Cyl.
d: 19540864 0 unused 0 0 # (Cyl.
On sparc64:

disklabel -r -e -I raidO

[...snip...]

total sectors: 19539968

[...snip...]

2 partitions:

size offset fstype [fsize bsize cpg/sgs]

a: 19540793 65 4.2BSD 0 0 0 # (Cyl.
c: 19539968 0 unused 0 0 # (Cyl.

0 - 18569)

0 — 19082%)
0 - 18799)
0 - 19081)

Partitions should be created with offset 65, because sectors < than 65 sector are marked as readonly and

therefore can’t be rewritten.

17.8.3 Creating PV, VG on raid disk

Physical volumes can be created on any disk like device and on any partition on it we can use a or d on
sparc64 c partitions. PV will label selected partition as LVM used and add needed information to it.

PV is created on char disk device entry. As any other disk operation in the NetBSD.

lvm pvcreate /dev/rraidOa

162

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration

For our example purpose I will create vg00 Volume Group. The first parameter of vgcreate command is
Volume Group name and second is PV created on raid. If you later found that VG size is no sufficient
and you need more space we will can add it with vgextend command.

lvm vgcreate vg00 /dev/rraidOa

lvm vgextend vg00 /dev/rraidla

Warning

If you add non-raid PV to your Volume Group your data are not safe anymore.
Therefore you should add raid based PV to VG if you want to keep your data safe.

17.8.4 Creating LV’s from VG located on raid disk

For our example purpose we will create Logical Volume named Iv0. If you later found that LV size is not
sufficient for you can add it with lvresize command.

Note: You must also resize the filesystem, when you resize LV, otherwise you will not see any
filesystem change when you mount LV.

Warning

Be aware that to shrink LV you must first shrink the filesystem (and shrinking of
FFSv2 filesystems is not supported yet as of NetBSD 9.0).

This means that for FFSv2 filesystems, the -L-* option is not available in NetBSD.

lvm lvcreate -n 1lv0 -L 2G vgO00
lvm lvresize -L+2G vg00/1v0

All lv device nodes are created in the /dev/vg00/ directory. File system can be create on LV with this
command. After filesystem creation LV can be mounted to system.

newfs -02 /dev/vg00/rlv0

mount /dev/vg00/1lv0 /mnt/

17.8.5 Integration of LV’s in to the system

For Proper LVM integration you have to enable lvm rc.d script, which detect LVs during boot and
enables them. You have to add entry for Logical Volume to the /etc/fstab file.

163

Chapter 17 NetBSD Logical Volume Manager (LVM) configuration
cat /etc/rc.conf

[snip]
lvm=yes

cat /etc/fstab

/dev/wd0Oa / ffs rw 11
/dev/vg00/1v0 /1v0/ ffs rw 11
[snip]

164

Chapter 18
Pluggable Authentication
Modules (PAM)

18.1 About

This article describes the underlying principles and mechanisms of the Pluggable Authentication
Modules (PAM) library, and explains how to configure PAM, how to integrate PAM into applications,
and how to write PAM modules.

See Section D.3.2 for the license of this chapter.

18.2 Introduction

The Pluggable Authentication Modules (PAM) library is a generalized API for authentication-related
services which allows a system administrator to add new authentication methods simply by installing
new PAM modules, and to modify authentication policies by editing configuration files.

PAM was defined and developed in 1995 by Vipin Samar and Charlie Lai of Sun Microsystems, and has
not changed much since. In 1997, the Open Group published the X/Open Single Sign-on (XSSO)
preliminary specification, which standardized the PAM API and added extensions for single (or rather
integrated) sign-on. At the time of this writing, this specification has not yet been adopted as a standard.

Although this article focuses primarily on FreeBSD 5.x and NetBSD 3.x, which both use OpenPAM, it
should be equally applicable to FreeBSD 4.x, which uses Linux-PAM, and other operating systems such
as Linux and Solaris™.

18.3 Terms and conventions

18.3.1 Definitions

The terminology surrounding PAM is rather confused. Neither Samar and Lai’s original paper nor the
XSSO0 specification made any attempt at formally defining terms for the various actors and entities
involved in PAM, and the terms that they do use (but do not define) are sometimes misleading and
ambiguous. The first attempt at establishing a consistent and unambiguous terminology was a whitepaper
written by Andrew G. Morgan (author of Linux-PAM) in 1999. While Morgan’s choice of terminology
was a huge leap forward, it is in this author’s opinion by no means perfect. What follows is an attempt,
heavily inspired by Morgan, to define precise and unambiguous terms for all actors and entities involved
in PAM.

165

Chapter 18 Pluggable Authentication Modules (PAM)
account
The set of credentials the applicant is requesting from the arbitrator.
applicant
The user or entity requesting authentication.
arbitrator

The user or entity who has the privileges necessary to verify the applicant’s credentials and the
authority to grant or deny the request.

chain

A sequence of modules that will be invoked in response to a PAM request. The chain includes
information about the order in which to invoke the modules, what arguments to pass to them, and
how to interpret the results.

client

The application responsible for initiating an authentication request on behalf of the applicant and
for obtaining the necessary authentication information from him.

facility

One of the four basic groups of functionality provided by PAM: authentication, account
management, session management and authentication token update.

module

A collection of one or more related functions implementing a particular authentication facility,
gathered into a single (normally dynamically loadable) binary file and identified by a single name.

policy

The complete set of configuration statements describing how to handle PAM requests for a
particular service. A policy normally consists of four chains, one for each facility, though some
services do not use all four facilities.

server

The application acting on behalf of the arbitrator to converse with the client, retrieve authentication
information, verify the applicant’s credentials and grant or deny requests.

service

A class of servers providing similar or related functionality and requiring similar authentication.
PAM policies are defined on a per-service basis, so all servers that claim the same service name will
be subject to the same policy.

166

Chapter 18 Pluggable Authentication Modules (PAM)
session

The context within which service is rendered to the applicant by the server. One of PAM’s four
facilities, session management, is concerned exclusively with setting up and tearing down this
context.

token

A chunk of information associated with the account, such as a password or passphrase, which the
applicant must provide to prove his identity.

transaction

A sequence of requests from the same applicant to the same instance of the same server, beginning
with authentication and session set-up and ending with session tear-down.

18.3.2 Usage examples

This section aims to illustrate the meanings of some of the terms defined above by way of a handful of
simple examples.

18.3.2.1 Client and server are one

This simple example shows alice su(l)’ing to root.

$ whoami

alice

$ 1s -1 ‘which su‘

-r-sr-xr-x 1 root wheel 10744 Dec 6 19:06 /usr/bin/su
$ su -

Password: xi3kiune

whoami

root

+ The applicantis alice.

» The account is root.

« The su(1) process is both client and server.
» The authentication token is xi3kiune.

+ The arbitrator is root, which is why su(1) is setuid root.

18.3.2.2 Client and server are separate

The example below shows eve try to initiate an ssh(1) connection to login.example.com, ask to log
in as bob, and succeed. Bob should have chosen a better password!

167

Chapter 18 Pluggable Authentication Modules (PAM)

$ whoami

eve

$ ssh bob@login.example.com

bobllogin.example.com’s password: god

Last login: Thu Oct 11 09:52:57 2001 from 192.168.0.1
NetBSD 3.0 (LOGIN) #1: Thu Mar 10 18:22:36 WET 2005

Welcome to NetBSD!
$

« The applicant is eve.

« The client is Eve’s ssh(1) process.

+ The server is the sshd(8) process on login.example.com
» The account is bob.

« The authentication token is god.

« Although this is not shown in this example, the arbitrator is root.

18.3.2.3 Sample policy
The following is FreeBSD’s default policy for sshd:

sshd auth required pam_nologin.so no_warn

sshd auth required pam_unix.so no_warn try_first_pass
sshd account required pam_login_access.so

sshd account required pam_unix.so

sshd session required pam_lastlog.so no_fail
sshd password required pam_permit.so

« This policy applies to the sshd service (which is not necessarily restricted to the sshd(8) server.)
« auth, account, session and password are facilities.

* pam_nologin.so, pam_unix.so, pam_login_access.so, pam_lastlog.so and
pam_permit.so are modules. It is clear from this example that pam_unix.so provides at least two
facilities (authentication and account management.)

There are some differences between FreeBSD and NetBSD PAM policies:

« By default, every configuration is done under /etc/pam.d.

« If configuration is non-existent, you will not have access to the system, in contrast with FreeBSD that
has a default policy of allowing authentication.

« For authentication, NetBSD forces at least one required, requisite or binding module to be
present.

168

Chapter 18 Pluggable Authentication Modules (PAM)

18.4 PAM Essentials

18.4.1 Facilities and primitives

The PAM API offers six different authentication primitives grouped in four facilities, which are
described below.

auth

Authentication. This facility concerns itself with authenticating the applicant and establishing the
account credentials. It provides two primitives:

« pam_authenticate(3) authenticates the applicant, usually by requesting an authentication token
and comparing it with a value stored in a database or obtained from an authentication server.

+ pam_setcred(3) establishes account credentials such as user ID, group membership and resource
limits.

account

Account management. This facility handles non-authentication-related issues of account availability,
such as access restrictions based on the time of day or the server’s work load. It provides a single
primitive:

« pam_acct_mgmt(3) verifies that the requested account is available.

session

Session management. This facility handles tasks associated with session set-up and tear-down, such
as login accounting. It provides two primitives:

» pam_open_session(3) performs tasks associated with session set-up: add an entry in the utmp and
wtmp databases, start an SSH agent, etc.

« pam_close_session(3) performs tasks associated with session tear-down: add an entry in the utmp
and wtmp databases, stop the SSH agent, etc.

password

Password management. This facility is used to change the authentication token associated with an

account, either because it has expired or because the user wishes to change it. It provides a single

primitive:

« pam_chauthtok(3) changes the authentication token, optionally verifying that it is sufficiently
hard to guess, has not been used previously, etc.

18.4.2 Modules

Modules are a very central concept in PAM; after all, they are the “M” in “PAM”. A PAM module is a
self-contained piece of program code that implements the primitives in one or more facilities for one
particular mechanism; possible mechanisms for the authentication facility, for instance, include the
UNIX® password database, NIS, LDAP and Radius.

169

Chapter 18 Pluggable Authentication Modules (PAM)

18.4.2.1 Module Naming

FreeBSD and NetBSD implement each mechanism in a single module, named pam_mechanism. so (for
instance, pam_unix.so for the UNIX® mechanism.) Other implementations sometimes have separate
modules for separate facilities, and include the facility name as well as the mechanism name in the
module name. To name one example, Solaris™ has a pam_dial_auth.so.1 module which is
commonly used to authenticate dialup users. Also, almost every module has a man page with the same
name, i.e.: pam_unix(8) explains how the pam_unix.so module works.

18.4.2.2 Module Versioning

FreeBSD’s original PAM implementation, based on Linux-PAM, did not use version numbers for PAM
modules. This would commonly cause problems with legacy applications, which might be linked against
older versions of the system libraries, as there was no way to load a matching version of the required
modules.

OpenPAM, on the other hand, looks for modules that have the same version number as the PAM library
(currently 2 in FreeBSD and 0 in NetBSD), and only falls back to an unversioned module if no versioned
module could be loaded. Thus legacy modules can be provided for legacy applications, while allowing
new (or newly built) applications to take advantage of the most recent modules.

Although Solaris™ PAM modules commonly have a version number, they’re not truly versioned,
because the number is a part of the module name and must be included in the configuration.

18.4.2.3 Module Path

There isn’t a common directory for storing PAM modules. Under FreeBSD, they are located at
/usr/1lib and, under NetBSD, you can find them in /usr/1ib/security.

18.4.3 Chains and policies

When a server initiates a PAM transaction, the PAM library tries to load a policy for the service specified
in the pam_start(3) call. The policy specifies how authentication requests should be processed, and is
defined in a configuration file. This is the other central concept in PAM: the possibility for the admin to
tune the system security policy (in the wider sense of the word) simply by editing a text file.

A policy consists of four chains, one for each of the four PAM facilities. Each chain is a sequence of
configuration statements, each specifying a module to invoke, some (optional) parameters to pass to the
module, and a control flag that describes how to interpret the return code from the module.

Understanding the control flags is essential to understanding PAM configuration files. There are a
number of different control flags:

binding

If the module succeeds and no earlier module in the chain has failed, the chain is immediately
terminated and the request is granted. If the module fails, the rest of the chain is executed, but the
request is ultimately denied.

170

Chapter 18 Pluggable Authentication Modules (PAM)

This control flag was introduced by Sun in Solaris™ 9 (SunOS™ 5.9), and is also supported by
OpenPAM.

required

If the module succeeds, the rest of the chain is executed, and the request is granted unless some
other module fails. If the module fails, the rest of the chain is also executed, but the request is
ultimately denied.

requisite

If the module succeeds, the rest of the chain is executed, and the request is granted unless some
other module fails. If the module fails, the chain is immediately terminated and the request is denied.

sufficient

If the module succeeds and no earlier module in the chain has failed, the chain is immediately
terminated and the request is granted. If the module fails, the module is ignored and the rest of the
chain is executed.

As the semantics of this flag may be somewhat confusing, especially when it is used for the last
module in a chain, it is recommended that the binding control flag be used instead if the
implementation supports it.

optional

The module is executed, but its result is ignored. If all modules in a chain are marked optional, all
requests will always be granted.

When a server invokes one of the six PAM primitives, PAM retrieves the chain for the facility the
primitive belongs to, and invokes each of the modules listed in the chain, in the order they are listed, until
it reaches the end, or determines that no further processing is necessary (either because a binding or
sufficient module succeeded, or because a requisite module failed.) The request is granted if and
only if at least one module was invoked, and all non-optional modules succeeded.

Note that it is possible, though not very common, to have the same module listed several times in the
same chain. For instance, a module that looks up user names and passwords in a directory server could
be invoked multiple times with different parameters specifying different directory servers to contact.
PAM treat different occurrences of the same module in the same chain as different, unrelated modules.

18.4.4 Transactions

The lifecycle of a typical PAM transaction is described below. Note that if any of these steps fails, the
server should report a suitable error message to the client and abort the transaction.

1. If necessary, the server obtains arbitrator credentials through a mechanism independent of
PAM—most commonly by virtue of having been started by root, or of being setuid root.

2. The server calls pam_start(3) to initialize the PAM library and specify its service name and the
target account, and register a suitable conversation function.

3. The server obtains various information relating to the transaction (such as the applicant’s user name
and the name of the host the client runs on) and submits it to PAM using pam_set_item(3).

171

Chapter 18 Pluggable Authentication Modules (PAM)

4. The server calls pam_authenticate(3) to authenticate the applicant.

5. The server calls pam_acct_mgmt(3) to verify that the requested account is available and valid. If the
password is correct but has expired, pam_acct_mgmt(3) will return PAM_NEW_AUTHTOK_REQD
instead of PAM_SUCCESS.

6. If the previous step returned PAM_NEW_AUTHTOK_REQD, the server now calls pam_chauthtok(3) to
force the client to change the authentication token for the requested account.

7. Now that the applicant has been properly authenticated, the server calls pam_setcred(3) to establish
the credentials of the requested account. It is able to do this because it acts on behalf of the
arbitrator, and holds the arbitrator’s credentials.

8. Once the correct credentials have been established, the server calls pam_open_session(3) to set up
the session.

9. The server now performs whatever service the client requested—for instance, provide the applicant
with a shell.

10. Once the server is done serving the client, it calls pam_close_session(3) to tear down the session.

11. Finally, the server calls pam_end(3) to notify the PAM library that it is done and that it can release
whatever resources it has allocated in the course of the transaction.

18.5 PAM Configuration

18.5.1 PAM policy files

18.5.1.1 The /etc/pam. conf file

The traditional PAM policy file is /etc/pam. conf. This file contains all the PAM policies for your
system. Each line of the file describes one step in a chain, as shown below:

login auth required pam_nologin.so no_warn

The fields are, in order: service name, facility name, control flag, module name, and module arguments.
Any additional fields are interpreted as additional module arguments.

A separate chain is constructed for each service / facility pair, so while the order in which lines for the
same service and facility appear is significant, the order in which the individual services and facilities are
listed is not. The examples in the original PAM paper grouped configuration lines by facility, and the
Solaris™ stock pam. conf still does that, but FreeBSD’s stock configuration groups configuration lines
by service. Either way is fine; either way makes equal sense.

18.5.1.2 The /etc/pam.d directory

OpenPAM and Linux-PAM support an alternate configuration mechanism, which is the preferred
mechanism in FreeBSD and NetBSD. In this scheme, each policy is contained in a separate file bearing
the name of the service it applies to. These files are stored in /etc/pam.d/.

172

Chapter 18 Pluggable Authentication Modules (PAM)

These per-service policy files have only four fields instead of pam. con£’s five: the service name field is
omitted. Thus, instead of the sample pam. conf line from the previous section, one would have the
following line in /etc/pam.d/login:

auth required pam_nologin.so no_warn

As a consequence of this simplified syntax, it is possible to use the same policy for multiple services by
linking each service name to a same policy file. For instance, to use the same policy for the su and sudo
services, one could do as follows:

cd /etc/pam.d
1ln -s su sudo

This works because the service name is determined from the file name rather than specified in the policy
file, so the same file can be used for multiple differently-named services.

Since each service’s policy is stored in a separate file, the pam . d mechanism also makes it very easy to
install additional policies for third-party software packages.

18.5.1.3 The policy search order

As we have seen above, PAM policies can be found in a number of places. If no configuration file is
found for a particular service, the /etc/pam.d/other is used instead. If that file does not exist,
/etc/pam.conf is searched for entries matching he specified service or, failing that, the "other" service.

It is essential to understand that PAM’s configuration system is centered on chains.

18.5.2 Breakdown of a configuration line

As explained in the PAM policy files section, each line in /etc/pam. conf consists of four or more
fields: the service name, the facility name, the control flag, the module name, and zero or more module
arguments.

The service name is generally (though not always) the name of the application the statement applies to. If
you are unsure, refer to the individual application’s documentation to determine what service name it
uses.

Note that if you use /etc/pam.d/ instead of /etc/pam.conf, the service name is specified by the
name of the policy file, and omitted from the actual configuration lines, which then start with the facility
name.

The facility is one of the four facility keywords described in the Facilities and primitives section.

Likewise, the control flag is one of the four keywords described in the Chains and policies section,
describing how to interpret the return code from the module. Linux-PAM supports an alternate syntax
that lets you specify the action to associate with each possible return code, but this should be avoided as
it is non-standard and closely tied in with the way Linux-PAM dispatches service calls (which differs
greatly from the way Solaris™ and OpenPAM do it.) Unsurprisingly, OpenPAM does not support this
syntax.

173

Chapter 18 Pluggable Authentication Modules (PAM)

18.5.3 Policies

To configure PAM correctly, it is essential to understand how policies are interpreted.

When an application calls pam_start(3), the PAM library loads the policy for the specified service and
constructs four module chains (one for each facility.) If one or more of these chains are empty, the
corresponding chains from the policy for the other service are substituted.

When the application later calls one of the six PAM primitives, the PAM library retrieves the chain for
the corresponding facility and calls the appropriate service function in each module listed in the chain, in
the order in which they were listed in the configuration. After each call to a service function, the module
type and the error code returned by the service function are used to determine what happens next. With a
few exceptions, which we discuss below, the following table applies:

Table 18-1. PAM chain execution summary

PAM_SUCCESS PAM_IGNORE other
binding if (!fail) break; - fail = true;
required - - fail = true;
requisite - - fail = true; break;
sufficient if (!fail) break; - -
optional - - -

If fail is true at the end of a chain, or when a “break” is reached, the dispatcher returns the error code
returned by the first module that failed. Otherwise, it returns PAM_SUCCESS.

The first exception of note is that the error code PAM_NEW_AUTHTOK_REQD is treated like a success,
except that if no module failed, and at least one module returned PAM_NEW_AUTHTOK_REQD, the
dispatcher will return PAM_NEW_AUTHTOK_REQD.

The second exception is that pam_setcred(3) treats binding and sufficient modules as if they were

required.

The third and final exception is that pam_chauthtok(3) runs the entire chain twice (once for preliminary
checks and once to actually set the password), and in the preliminary phase it treats binding and
sufficient modules as if they were required.

18.6 PAM modules

18.6.1 Common Modules

18.6.1.1 pam_deny(8)

The pam_deny(8) module is one of the simplest modules available; it responds to any request with
PAM_AUTH_ERR. It is useful for quickly disabling a service (add it to the top of every chain), or for
terminating chains of sufficient modules.

174

Chapter 18 Pluggable Authentication Modules (PAM)

18.6.1.2 pam_echo(8)

The pam_echo(8) module simply passes its arguments to the conversation function as a
PAM_TEXT_INFO message. It is mostly useful for debugging, but can also serve to display messages such
as “Unauthorized access will be prosecuted” before starting the authentication procedure.

18.6.1.3 pam_exec(8)

The pam_exec(8) module takes its first argument to be the name of a program to execute, and the
remaining arguments are passed to that program as command-line arguments. One possible application is
to use it to run a program at login time which mounts the user’s home directory.

18.6.1.4 pam_ftpusers(8)

The pam_ftpusers(8) module successes if and only if the user is listed in /etc/ftpusers. Currently, in
NetBSD, this module doesn’t understand the extended syntax of ftpd(8), but this will be fixed in the
future.

18.6.1.5 pam_group(8)

The pam_group(8) module accepts or rejects applicants on the basis of their membership in a particular
file group (normally wheel for su(1)). It is primarily intended for maintaining the traditional behaviour
of BSD su(1), but has many other uses, such as excluding certain groups of users from a particular
service.

In NetBSD, there is an argument called authenticate in which the user is asked to authenticate using
his own password.

18.6.1.6 pam_guest(8)

The pam_guest(8) module allows guest logins using fixed login names. Various requirements can be
placed on the password, but the default behaviour is to allow any password as long as the login name is
that of a guest account. The pam_guest(8) module can easily be used to implement anonymous FTP
logins.

18.6.1.7 pam_krb5(8)

The pam_krb5(8) module provides functions to verify the identity of a user and to set user specific
credentials using Kerberos 5. It prompts the user for a password and obtains a new Kerberos TGT for the
principal. The TGT is verified by obtaining a service ticket for the local host. The newly acquired
credentials are stored in a credential cache and the environment variable KRBSCCNAME is set
appropriately. The credentials cache should be destroyed by the user at logout with kdestroy(1).

18.6.1.8 pam_ksu(8)

The pam_ksu(8) module provides only authentication services for Kerberos 5 to determine whether or
not the applicant is authorized to obtain the privileges of the target account.

175

Chapter 18 Pluggable Authentication Modules (PAM)

18.6.1.9 pam_lastlog(8)

The pam_lastlog(8) module provides only session management services. It records the session in
utmp(5), utmpx(5), wtmp(5), wtmpx(5), lastlog(5) and lastlogx(5) databases.

18.6.1.10 pam_login_access(8)

The pam_login_access(8) module provides an implementation of the account management primitive
which enforces the login restrictions specified in the login.access(5) table.

18.6.1.11 pam_nologin(8)

The pam_nologin(8) module refuses non-root logins when /var/run/nologin exists. This file is
normally created by shutdown(8) when less than five minutes remain until the scheduled shutdown time.

18.6.1.12 pam_permit(8)

The pam_permit(8) module is one of the simplest modules available; it responds to any request with
PAM_SUCCESS. It is useful as a placeholder for services where one or more chains would otherwise be
empty.

18.6.1.13 pam_radius(8)

The pam_radius(8) module provides authentication services based upon the RADIUS (Remote
Authentication Dial In User Service) protocol.

18.6.1.14 pam_rhosts(8)

The pam_rhosts(8) module provides only authentication services. It reports success if and only if the
target user’s ID is not 0 and the remote host and user are listed in /etc/hosts.equiv or in the target
user’s ~/.rhosts.

18.6.1.15 pam_rootok(8)

The pam_rootok(8) module reports success if and only if the real user id of the process calling it (which
is assumed to be run by the applicant) is 0. This is useful for non-networked services such as su(1) or
passwd(1), to which the root should have automatic access.

18.6.1.16 pam_securetty(8)

The pam_securetty(8) module provides only account services. It is used when the applicant is attempting
to authenticate as superuser, and the process is attached to an insecure TTY.

176

Chapter 18 Pluggable Authentication Modules (PAM)

18.6.1.17 pam_self(8)

The pam_self(8) module reports success if and only if the names of the applicant matches that of the
target account. It is most useful for non-networked services such as su(1), where the identity of the
applicant can be easily verified.

18.6.1.18 pam_ssh(8)

The pam_ssh(8) module provides both authentication and session services. The authentication service
allows users who have passphrase-protected SSH secret keys in their ~/ . ssh directory to authenticate
themselves by typing their passphrase. The session service starts ssh-agent(1) and preloads it with the
keys that were decrypted in the authentication phase. This feature is particularly useful for local logins,
whether in X (using xdm(1) or another PAM-aware X login manager) or at the console.

This module implements what is fundamentally a password authentication scheme. Care should be taken
to only use this module over a secure session (secure TTY, encrypted session, etc.), otherwise the user’s
SSH passphrase could be compromised.

Additional consideration should be given to the use of pam_ssh(8). Users often assume that file
permissions are sufficient to protect their SSH keys, and thus use weak or no passphrases. Since the
system administrator has no effective means of enforcing SSH passphrase quality, this has the potential
to expose the system to security risks.

18.6.1.19 pam_unix(8)

The pam_unix(8) module implements traditional UNIX® password authentication, using getpwnam(3)
under FreeBSD or getpwnam_r(3) under NetBSD to obtain the target account’s password and compare it
with the one provided by the applicant. It also provides account management services (enforcing account
and password expiration times) and password-changing services. This is probably the single most useful
module, as the great majority of admins will want to maintain historical behaviour for at least some
services.

18.6.2 NetBSD-specific PAM Modules
18.6.2.1 pam_skey(8)

The pam_skey(8) module implements S/Key One Time Password (OTP) authentication methods, using
the /etc/skeykeys database.

18.7 PAM Application Programming

This section has not yet been written.

177

18.8 PAM Module Programming

This section has not yet been written.

18.9 Sample PAM Application

Chapter 18 Pluggable Authentication Modules (PAM)

The following is a minimal implementation of su(1) using PAM. Note that it uses the OpenPAM-specific
openpam_ttyconv(3) conversation function, which is prototyped in security/openpanm.h. If you wish
build this application on a system with a different PAM library, you will have to provide your own
conversation function. A robust conversation function is surprisingly difficult to implement; the one
presented in the Sample PAM Conversation Function sub-chapter is a good starting point, but should not

be used in real-world applications.

#include <sys/param.h>
#include <sys/wait.h>

#include <err.h>

#include <pwd.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <unistd.h>

#include <security/pam_appl.h>

#include <security/openpam.h> /*x for openpam_ttyconv () =/

extern char xxenviron;

static pam_handle_t +*pamh;
static struct pam_conv pamc;

static void
usage (void)

{

fprintf (stderr, "Usage: su [login

exit (1);
}

int

main (int argc, char xargv([])

{

char hostname [MAXHOSTNAMELEN];
const char xuser, x*tty;

largs]]\n");

char xxargs, =**pam_envlist, *xpam_env;

struct passwd *pwd;
int o, pam_err, status;
pid_t pid;

while ((o = getopt (argc, argv,

1= -1)

178

Chapter 18 Pluggable Authentication Modules (PAM)

switch (o) {
case 'h’:
default:
usage () ;

}

argc —-= optind;
argv += optind;

if (argc > 0) {

user = *xargv;
-—-argc;
++argv;
} else {
user = "root";

}

/* initialize PAM =/
pamc.conv = &openpam_ttyconv;
pam_start ("su", user, &pamc, &pamh);

/+ set some items */

gethostname (hostname, sizeof (hostname));

if ((pam_err = pam_set_item(pamh, PAM_RHOST, hostname)) != PAM_SUCCESS)
goto pamerr;

user = getlogin();

if ((pam_err = pam_set_item(pamh, PAM_RUSER, user)) != PAM_SUCCESS)
goto pamerr;

tty = ttyname (STDERR_FILENO) ;

if ((pam_err = pam_set_item(pamh, PAM_TTY, tty)) != PAM_SUCCESS)

goto pamerr;

/* authenticate the applicant «/

if ((pam_err = pam_authenticate (pamh, 0)) != PAM_SUCCESS)

goto pamerr;

if ((pam_err = pam_acct_mgmt (pamh, 0)) == PAM_NEW_AUTHTOK_REQD)
pam_err = pam_chauthtok (pamh, PAM_CHANGE_EXPIRED_AUTHTOK) ;

if (pam_err != PAM_SUCCESS)

goto pamerr;

/+ establish the requested credentials =/
if ((pam_err = pam_setcred(pamh, PAM_ESTABLISH_CRED)) != PAM_SUCCESS)
goto pamerr;

/+ authentication succeeded; open a session x/
if ((pam_err = pam_open_session (pamh, 0)) != PAM_SUCCESS)
goto pamerr;

/* get mapped user name; PAM may have changed it */

pam_err = pam_get_item(pamh, PAM_USER, (const void =*x*)&user);
if (pam_err != PAM_SUCCESS || (pwd = getpwnam(user)) == NULL)
goto pamerr;

179

Chapter 18 Pluggable Authentication Modules (PAM)

/* export PAM environment */
if ((pam_envlist = pam_getenvlist (pamh)) != NULL) {
for (pam_env = pam_envlist; *pam_env != NULL; ++pam_env) {
putenv (xpam_env) ;
free (xpam_env) ;
}
free (pam_envlist);

}

/* build argument list «/
if ((args = calloc(argc + 2, sizeof =xargs)) == NULL) {
warn ("calloc()");
goto err;
}
xargs = pwd->pw_shell;
memcpy (args + 1, argv, argc * sizeof xargs);

/+ fork and exec =/
switch ((pid = fork())) {
case —1:

warn ("fork ()");

goto err;
case 0:

/+ child: give up privs and start a shell =/

/* set uid and groups x/

if (initgroups (pwd->pw_name, pwd->pw_gid) == -1) {
warn ("initgroups () ");

_exit(1);

}

if (setgid(pwd->pw_gid) == -1) {
warn ("setgid()");

_exit (1);

}

if (setuid(pwd->pw_uid) == -1) {
warn ("setuid()");

_exit(1);

}

execve (xargs, args, environ);

warn ("execve () ") ;

_exit (1);
default:

/+ parent: wait for child to exit =*/
waitpid(pid, &status, 0);

/* close the session and release PAM resources =*/
pam_err = pam_close_session (pamh, 0);

pam_end (pamh, pam_err);

exit (WEXITSTATUS (status));
}

pamerr:

180

fprintf (stderr, "Sorry\n");
err:

pam_end (pamh, pam_err);
exit (1);

}

18.10 Sample PAM Module

Chapter 18 Pluggable Authentication Modules (PAM)

The following is a minimal implementation of pam_unix(8), offering only authentication services. It
should build and run with most PAM implementations, but takes advantage of OpenPAM extensions if
available: note the use of pam_get_authtok(3), which enormously simplifies prompting the user for a

password.

#include <sys/param.h>

#include <pwd.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#include <security/pam_modules.h>

#include <security/pam_appl.h>

#ifndef _OPENPAM

static char password_prompt []

#endif
#ifndef PAM_EXTERN
#define PAM_EXTERN
#endif

PAM_EXTERN int

= "Password:";

pam_sm_authenticate (pam_handle_t xpamh, int flags,

int argc, const char xargv([])

{
#ifndef _OPENPAM
const void #*ptr;

const struct pam_conv xconv;

struct pam_message msg;

const struct pam_message *msgp;

struct pam_response xresp;
#endif

struct passwd xpwd;

const char =xuser;

char xcrypt_password, =*password;

int pam_err, retry;

/+ identify user =*/

if ((pam_err = pam_get_user (pamh, &user, NULL)) != PAM_SUCCESS)

return (pam_err);

181

Chapter 18 Pluggable Authentication Modules (PAM)

if ((pwd = getpwnam(user)) == NULL)
return (PAM_USER_UNKNOWN) ;

/* get password =/
#ifndef _OPENPAM
pam_err = pam_get_item(pamh, PAM_CONV, &ptr);

if (pam_err != PAM_SUCCESS)
return (PAM_SYSTEM_ERR);
conv = ptr;

msg.msg_style = PAM_PROMPT_ECHO_OFF;

msg.msg = password_prompt;

msgp = &msg;

#endif

password = NULL;

for (retry = 0; retry < 3; ++retry) {

#ifdef _OPENPAM

pam_err = pam_get_authtok (pamh, PAM_AUTHTOK,

(const char =x)&password, NULL);

#else
resp = NULL;
pam_err = (xconv—->conv) (1, &msgp, &resp, conv—>appdata_ptr);
if (resp != NULL) {
if (pam_err == PAM_SUCCESS)

password = resp->resp;
else

free (resp->resp);
free(resp);

}

#endif
if (pam_err == PAM_SUCCESS)
break;
}
if (pam_err == PAM_CONV_ERR)
return (pam_err);
if (pam_err != PAM_SUCCESS)

return (PAM_AUTH_ERR) ;

/* compare passwords %/

if ((!'pwd->pw_passwd[0] && (flags & PAM_DISALLOW_NULL_AUTHTOK)) ||
(crypt_password = crypt (password, pwd->pw_passwd)) == NULL ||
strcmp (crypt_password, pwd->pw_passwd) != 0)

pam_err = PAM_AUTH_ERR;

else

pam_err = PAM_ SUCCESS;
#ifndef _OPENPAM
free (password);
#endif
return (pam_err);

}
PAM_EXTERN int

pam_sm_setcred (pam_handle_t *pamh, int flags,
int argc, const char xargv([])

182

Chapter 18 Pluggable Authentication Modules (PAM)

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_acct_mgmt (pam_handle_t xpamh, int flags,
int argc, const char =xargv([])

{

return (PAM_SUCCESS) ;
t

PAM_EXTERN int
pam_sm_open_session (pam_handle_t xpamh, int flags,
int argc, const char xargv([])

{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_close_session (pam_handle_t *pamh, int flags,
int argc, const char =xargv([])

{

return (PAM_SUCCESS);
}

PAM_EXTERN int
pam_sm_chauthtok (pam_handle_t xpamh, int flags,
int argc, const char xargv([])

{

return (PAM_SERVICE_ERR) ;
}

#ifdef PAM_MODULE_ENTRY
PAM_MODULE_ENTRY ("pam_unix");
fendif

18.11 Sample PAM Conversation Function

The conversation function presented below is a greatly simplified version of OpenPAM’s
openpam_ttyconv(3). It is fully functional, and should give the reader a good idea of how a conversation
function should behave, but it is far too simple for real-world use. Even if you’re not using OpenPAM,
feel free to download the source code and adapt openpam_ttyconv(3) to your uses; we believe it to be as
robust as a tty-oriented conversation function can reasonably get.

#include <stdio.h>
#include <stdlib.h>

183

Chapter 18 Pluggable Authentication Modules (PAM)

#include <string.h>
#include <unistd.h>

#include <security/pam_appl.h>

int
converse (int n, const struct pam_message #**msg,
struct pam_response xxresp, void =xdata)
{
struct pam_response xaresp;
char buf[PAM_MAX_RESP_SIZE];
int 1i;

data = data;

if (n <= 0 || n > PAM _MAX NUM_MSG)

return (PAM_CONV_ERR);

if ((aresp = calloc(n, sizeof xaresp)) == NULL)
return (PAM_BUF_ERR) ;

for (i = 0; i < n; ++1i) {

aresp([i] .resp_retcode = 0;

aresp([i] .resp = NULL;
switch (msg[i]->msg_style) {
case PAM_PROMPT_ECHO_OFF:

arespl[i] .resp = strdup (getpass (msgl[i]->msqg));
if (aresp[i].resp == NULL)

goto failj;
break;

case PAM_PROMPT_ECHO_ON:
fputs (msg[i]->msg, stderr);

if (fgets(buf, sizeof buf, stdin) == NULL)
goto fail;

aresp[i].resp = strdup (buf);

if (arespl[i].resp == NULL)
goto failj;

break;

case PAM_ERROR_MSG:
fputs (msg[i]->msg, stderr);
if (strlen(msg[i]->msg) > 0 &&
msg[i]->msg[strlen (msg[i]->msg) - 1] != ’'\n’)
fputc (" \n’, stderr);
break;
case PAM_TEXT_INFO:
fputs (msg[i]->msg, stdout);
if (strlen(msg[i]->msg) > 0 &&
msg[i]->msg[strlen(msg[i]->msg) - 1] != ’"\n’)
fputc (' \n’, stdout);
break;
default:
goto failj;
}
}
*resp = aresp;
return (PAM_SUCCESS);

184

Chapter 18 Pluggable Authentication Modules (PAM)

fail:
for (1 = 0; 1 < n; ++i) {
if (arespli].resp != NULL) {
memset (aresp[i] .resp, 0, strlen(aresp[i].resp));
free(arespli] .resp);
}
}
memset (aresp, 0, n x sizeof xaresp);
*resp = NULL;
return (PAM_CONV_ERR) ;
}

18.12 Further Reading
Bibliography

Papers

Making Login Services Independent of Authentication Technologies
(http://web.archive.org/web/20090206170844/http.://www.sun.com/software/solaris/pam/pam.external.pdf),
Vipin Samar and Charlie Lai, Sun Microsystems.

X/Open Single Sign-on Preliminary Specification (http://www.opengroup.org/pubs/catalog/p702.htm),
The Open Group, 1-85912-144-6, June 1997.

Pluggable Authentication Modules (http.//www.kernel.org/pub/linux/libs/pam/pre/doc/current-draft.txt),
Andrew G. Morgan, October 6, 1999.

User Manuals

PAM Administration
(http://web.archive.org/web/20091229050456/http://www.sun.com/software/solaris/pam/pam.admin.pdf),
Sun Microsystems.

Related Web pages

OpenPAM homepage (http://openpam.sourceforge.net/), Dag-Erling Smgrgrav, ThinkSec AS.
Linux-PAM homepage (http://www.kernel.org/pub/linux/libs/pam/), Andrew G. Morgan.

Solaris PAM homepage
(http://web.archive.org/web/201 1041002 1935/http.://www.sun.com/software/solaris/pam/), Sun
Microsystems.

185

Chapter 19
Tuning NetBSD

19.1 Introduction

19.1.1 Overview

This section covers a variety of performance tuning topics. It attempts to span tuning from the
perspective of the system administrator to systems programmer. The art of performance tuning itself is
very old. To tune something means to make it operate more efficiently, whether one is referring to a
NetBSD based technical server or a vacuum cleaner, the goal is to improve something, whether that be
the way something is done, how it works or how it is put together.

19.1.1.1 What is Performance Tuning?

A view from 10,000 feet pretty much dictates that everything we do is task oriented, this pertains to a
NetBSD system as well. When the system boots, it automatically begins to perform a variety of tasks.
When a user logs in, they usually have a wide variety of tasks they have to accomplish. In the scope of
these documents, however, performance tuning strictly means to improve how efficient a NetBSD system
performs.

The most common thought that crops into someone’s mind when they think "tuning" is some sort of
speed increase or decreasing the size of the kernel - while those are ways to improve performance, they
are not the only ends an administrator may have to take for increasing efficiency. For our purposes,
performance tuning means this: To make a NetBSD system operate in an optimum state.

Which could mean a variety of things, not necessarily speed enhancements. A good example of this is
filesystem formatting parameters, on a system that has a lot of small files (say like a source repository) an
administrator may need to increase the number of inodes by making their size smaller (say down to
1024k) and then increasing the amount of inodes. In this case the number of inodes was increased,
however, it keeps the administrator from getting those nasty out of inodes messages, which ultimately
makes the system more efficient.

Tuning normally revolves around finding and eliminating bottlenecks. Most of the time, such bottlenecks
are spurious, for example, a release of Mozilla that does not quite handle java applets too well can cause
Mozilla to start crunching the CPU, especially applets that are not done well. Occasions when processes
seem to spin off into nowhere and eat CPU are almost always resolved with a kill. There are instances,
however, when resolving bottlenecks takes a lot longer, for example, say an rsynced server is just getting
larger and larger. Slowly, performance begins to fade and the administrator may have to take some sort of
action to speed things up, however, the situation is relative to say an emergency like an instantly spiked
CPU.

186

Chapter 19 Tuning NetBSD

19.1.1.2 When does one tune?

Many NetBSD users rarely have to tune a system. The GENERIC kernel may run just fine and the
layout/configuration of the system may do the job as well. By the same token, as a pragma it is always
good to know how to tune a system. Most often tuning comes as a result of a sudden bottleneck issue
(which may occur randomly) or a gradual loss of performance. It does happen in a sense to everyone at
some point, one process that is eating the CPU is a bottleneck as much as a gradual increase in paging.
So, the question should not be when to tune so much as when to learn to tune.

One last time to tune is if you can tune in a preventive manner (and you think you might need to) then do
it. One example of this was on a system that needed to be able to reboot quickly. Instead of waiting, I did
everything I could to trim the kernel and make sure there was absolutely nothing running that was not
needed, I even removed drivers that did have devices, but were never used (Ip). The result was reducing
reboot time by nearly two-thirds. In the long run, it was a smart move to tune it before it became an issue.

19.1.1.3 What these Documents Will Not Cover

Before I wrap up the introduction, I think it is important to note what these documents will not cover.
This guide will pertain only to the core NetBSD system. In other words, it will not cover tuning a web
server’s configuration to make it run better; however, it might mention how to tune NetBSD to run better
as a web server. The logic behind this is simple: web servers, database software, etc. are third party and
almost limitless. I could easily get mired down in details that do not apply to the NetBSD system.
Almost all third party software have their own documentation about tuning anyhow.

19.1.1.4 How Examples are Laid Out

Since there is ample man page documentation, only used options and arguments with examples are
discussed. In some cases, material is truncated for brevity and not thoroughly discussed because, quite
simply, there is too much. For example, every single device driver entry in the kernel will not be
discussed, however, an example of determining whether or not a given system needs one will be. Nothing
in this Guide is concrete, tuning and performance are very subjective, instead, it is a guide for the reader
to learn what some of the tools available to them can do.

19.2 Tuning Considerations

Tuning a system is not really too difficult when pro-active tuning is the approach. This document
approaches tuning from a “before it comes up” approach. While tuning in spare time is considerably
easier versus say, a server that is almost completely bogged down to 0.1% idle time, there are still a few
things that should be mulled over about tuning before actually doing it, hopefully, before a system is
even installed.

19.2.1 General System Configuration

Of course, how the system is setup makes a big difference. Sometimes small items can be overlooked
which may in fact cause some sort of long term performance problem.

187

Chapter 19 Tuning NetBSD

19.2.1.1 Filesystems and Disks

How the filesystem is laid out relative to disk drives is very important. On hardware RAID systems, it is
not such a big deal, but, many NetBSD users specifically use NetBSD on older hardware where hardware
RAID simply is not an option. The idea of / being close to the first drive is a good one, but for example
if there are several drives to choose from that will be the first one, is the best performing the one that /
will be on? On a related note, is it wise to split off /usr? Will the system see heavy usage say in
/usr/pkgsrc? It might make sense to slap a fast drive in and mount it under /usr/pkgsrc, or it might
not. Like all things in performance tuning, this is subjective.

19.2.1.2 Swap Configuration

There are three schools of thought on swap size and about fifty on using split swap files with prioritizing
and how that should be done. In the swap size arena, the vendor schools (at least most commercial ones)
usually have their own formulas per OS. As an example, on a particular version of HP-UX with a
particular version of Oracle the formula was:

2.5 GB * Number_of_processor

Well, that all really depends on what type of usage the database is having and how large it is, for instance
if it is so large that it must be distributed, that formula does not fit well.

The next school of thought about swap sizing is sort of strange but makes some sense, it says, if possible,
get a reference amount of memory used by the system. It goes something like this:

1. Startup a machine and estimate total memory needs by running everything that may ever be needed
at once. Databases, web servers whatever. Total up the amount.

2. Add a few MB for padding.
3. Subtract the amount of physical RAM from this total.

If the amount leftover is 3 times the size of physical RAM, consider getting more RAM. The problem, of
course, is figuring out what is needed and how much space it will take. There is also another flaw in this
method, some programs do not behave well. A glaring example of misbehaved software is web browsers.
On certain versions of Netscape, when something went wrong it had a tendency to runaway and eat swap
space. So, the more spare space available, the more time to kill it.

Last and not least is the tried and true PHYSICAL_RAM * 2 method. On modern machines and even
older ones (with limited purpose of course) this seems to work best.

All in all, it is hard to tell when swapping will start. Even on small 16MB RAM machines (and less)
NetBSD has always worked well for most people until misbehaving software is running.

19.2.2 System Services

On servers, system services have a large impact. Getting them to run at their best almost always requires
some sort of network level change or a fundamental speed increase in the underlying system (which of
course is what this is all about). There are instances when some simple solutions can improve services.
One example, an ftp server is becoming slower and a new release of the ftp server that is shipped with the

188

Chapter 19 Tuning NetBSD

system comes out that, just happens to run faster. By upgrading the ftp software, a performance boost is
accomplished.

Another good example where services are concerned is the age old question: “To use inetd or not to use
inetd?” A great service example is pop3. Pop3 connections can conceivably clog up inetd. While the
pop3 service itself starts to degrade slowly, other services that are multiplexed through inetd will also
degrade (in some case more than pop3). Setting up pop3 to run outside of inetd and on its own may help.

19.2.3 The NetBSD Kernel

The NetBSD kernel obviously plays a key role in how well a system performs, while rebuilding and
tuning the kernel is covered later in the text, it is worth discussing in the local context from a high level.

Tuning the NetBSD kernel really involves three main areas:

1. removing unrequired drivers
2. configuring options

3. system settings

19.2.3.1 Removing Unrequired Drivers

Taking drivers out of the kernel that are not needed achieves several results; first, the system boots faster
since the kernel is smaller, second again since the kernel is smaller, more memory is free to users and
processes and third, the kernel tends to respond quicker.

19.2.3.2 Configuring Options

Configuring options such as enabling/disabling certain subsystems, specific hardware and filesystems
can also improve performance pretty much the same way removing unrequired drivers does. A very
simple example of this is a FTP server that only hosts ftp files - nothing else. On this particular server
there is no need to have anything but native filesystem support and perhaps a few options to help speed
things along. Why would it ever need NTFS support for example? Besides, if it did, support for NTFS
could be added at some later time. In an opposite case, a workstation may need to support a lot of
different filesystem types to share and access files.

19.2.3.3 System Settings

System wide settings are controlled by the kernel, a few examples are filesystem settings, network
settings and core kernel settings such as the maximum number of processes. Almost all system settings
can be at least looked at or modified via the sysctl facility. Examples using the sysctl facility are given
later on.

189

Chapter 19 Tuning NetBSD

19.3 Visual Monitoring Tools

NetBSD ships a variety of performance monitoring tools with the system. Most of these tools are
common on all UNIX systems. In this section some example usage of the tools is given with
interpretation of the output.

19.3.1 The top Process Monitor

The top monitor does exactly what it says: it displays the CPU hogs on the system. To run the monitor,
simply type top at the prompt. Without any arguments, it should look like:

load averages: 0.09, 0.12, 0.08 20:23:41
21 processes: 20 sleeping, 1 on processor

CPU states: 0.0% user, 0.0% nice, 0.0% system, 0.0% interrupt, 100% idle
Memory: 15M Act, 1104K Inact, 208K Wired, 22M Free, 129M Swap free

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
13663 root 2 0 1552K 1836K sleep 0:08 0.00% 0.00% httpd

127 root 10 0 129M 4464K sleep 0:01 0.00% 0.00% mount_mfs
22591 root 2 0 388K 1156K sleep 0:01 0.00% 0.00% sshd

108 root 2 0 132K 472K sleep 0:01 0.00% 0.00% syslogd
22597 Jjrf 28 0 156K 616K onproc 0:00 0.00% 0.00% top
22592 Jjrf 18 0 828K 1128K sleep 0:00 0.00% 0.00% tcsh

203 root 10 0 220K 424K sleep 0:00 0.00% 0.00% cron

1 root 10 0 312K 192K sleep 0:00 0.00% 0.00% init

205 root 3 0 48K 432K sleep 0:00 0.00% 0.00% getty

206 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty

208 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty

207 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
13667 nobody 2 0 1660K 1508K sleep 0:00 0.00% 0.00% httpd

9926 root 2 0 336K 588K sleep 0:00 0.00% 0.00% sshd

200 root 2 0 76K 456K sleep 0:00 0.00% 0.00% inetd

182 root 2 0 92K 436K sleep 0:00 0.00% 0.00% portsentry

180 root 2 0 92K 436K sleep 0:00 0.00% 0.00% portsentry
13666 nobody -4 0 1600K 1260K sleep 0:00 0.00% 0.00% httpd

The top utility is great for finding CPU hogs, runaway processes or groups of processes that may be
causing problems. The output shown above indicates that this particular system is in good health. Now,
the next display should show some very different results:

load averages: 0.34, 0.16, 0.13 21:13:47
25 processes: 24 sleeping, 1 on processor

CPU states: 0.5% user, 0.0% nice, 9.0% system, 1.0% interrupt, 89.6% idle
Memory: 20M Act, 1712K Inact, 240K Wired, 30M Free, 129M Swap free

PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
5304 Jjrf -5 0 56K 336K sleep 0:04 66.07% 19.53% bonnie
5294 root 2 0 412K 1176K sleep 0:02 1.01% 0.93% sshd

108 root 2 0 132K 472K sleep 1:23 0.00% 0.00% syslogd

187 root 2 0 1552K 1824K sleep 0:07 0.00% 0.00% httpd
5288 root 2 0 412K 1176K sleep 0:02 0.00% 0.00% sshd
5302 Jjrf 28 0 160K 620K onproc 0:00 0.00% 0.00% top

190

Chapter 19 Tuning NetBSD

5295 Jjrf 18 0 828K 1116K sleep 0:00 0.00% 0.00% tcsh
5289 Jjrf 18 0 828K 1112K sleep 0:00 0.00% 0.00% tcsh
127 root 10 0 129M 8388K sleep 0:00 0.00% 0.00% mount_mfs
204 root 10 0 220K 424K sleep 0:00 0.00% 0.00% cron
1 root 10 0 312K 192K sleep 0:00 0.00% 0.00% init
208 root 3 0 48K 432K sleep 0:00 0.00% 0.00% getty
210 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
209 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
211 root 3 0 48K 424K sleep 0:00 0.00% 0.00% getty
217 nobody 2 0 1616K 1272K sleep 0:00 0.00% 0.00% httpd
184 root 2 0 336K 580K sleep 0:00 0.00% 0.00% sshd
201 root 2 0 76K 456K sleep 0:00 0.00% 0.00% inetd

At first, it should seem rather obvious which process is hogging the system, however, what is interesting
in this case is why. The bonnie program is a disk benchmark tool which can write large files in a variety
of sizes and ways. What the previous output indicates is only that the bonnie program is a CPU hog, but
not why.

19.3.1.1 Other Neat Things About Top

A careful examination of the manual page top(1) shows that there is a lot more that can be done with top,
for example, processes can have their priority changed and killed. Additionally, filters can be set for
looking at processes.

19.3.2 The sysstat utility

As the man page sysstat(1) indicates, the sysstat utility shows a variety of system statistics using the
curses library. While it is running the screen is shown in two parts, the upper window shows the current
load average while the lower screen depends on user commands. The exception to the split window view
is when vmstat display is on which takes up the whole screen. Following is what sysstat looks like on a
fairly idle system with no arguments given when it was invoked:

/0 /1 /2 /3 /4 /5 /6 /17 /8 /9 /10

Load Average |

/0 /10 /20 /30 /40 /50 /60O /70 /80 /90 /100
<idle> XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXKKKXXXX

Basically a lot of dead time there, so now have a look with some arguments provided, in this case,
sysstat inet.tcp which looks like this:

/0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /10

Load Average |

0 connections initiated 19 total TCP packets sent
0 connections accepted 11 data
0 connections established 0 data (retransmit)
8 ack-only
0 connections dropped 0 window probes
0 in embryonic state 0 window updates

191

Chapter 19 Tuning NetBSD

0 on retransmit timeout 0 urgent data only
0 by keepalive 0 control
0 by persist
29 total TCP packets received
11 potential rtt updates 17 in sequence
11 successful rtt updates 0 completely duplicate
9 delayed acks sent 0 with some duplicate data
0 retransmit timeouts 4 out of order
0 persist timeouts 0 duplicate acks
0 keepalive probes 11 acks
0 keepalive timeouts 0 window probes
0 window updates

Now that is informative. The first poll is accumulative, so it is possible to see quite a lot of information in
the output when sysstat is invoked. Now, while that may be interesting, how about a look at the buffer

cache with sysstat bufcache:

/0 /1 /2 /3 /4 /5 /6 /7 /8

Load Average

There are 1642 buffers using 6568 kBytes of memory.

File System Bufs used % kB in use % Bufsize kB
/ 877 53 6171 93 6516
/var/tmp 5 0 17 0 28
Total: 882 53 6188 94 6544

/9 /10
$ Util %
99 94
0 60
99

Again, a pretty boring system, but great information to have available. While this is all nice to look at, it
is time to put a false load on the system to see how sysstat can be used as a performance monitoring tool.
As with top, bonnie++ will be used to put a high load on the I/O subsystems and a little on the CPU. The

bufcache will be looked at again to see of there are any noticeable differences:

/0 /1 /2 /3 /4 /5 /6 /7 /8
Load Average]

There are 1642 buffers using 6568 kBytes of memory.

File System Bufs used % kB in use % Bufsize kB
/ 811 49 6422 97 6444
Total: 811 49 6422 97 6444

/9 /10
% Util %
98 99
98

First, notice that the load average shot up, this is to be expected of course, then, while most of the
numbers are close, notice that utilization is at 99%. Throughout the time that bonnie++ was running the
utilization percentage remained at 99, this of course makes sense, however, in a real troubleshooting
situation, it could be indicative of a process doing heavy I/O on one particular file or filesystem.

192

Chapter 19 Tuning NetBSD

19.4 Monitoring Tools

In addition to screen oriented monitors and tools, the NetBSD system also ships with a set of command
line oriented tools. Many of the tools that ship with a NetBSD system can be found on other UNIX and
UNIX-like systems.

19.4.1 fstat

The fstat(1) utility reports the status of open files on the system, while it is not what many administrators
consider a performance monitor, it can help find out if a particular user or process is using an inordinate
amount of files, generating large files and similar information.

Following is a sample of some fstat output:

USER CMD PID FD MOUNT INUM MODE SZ|DV R/W
jrf tcsh 21607 wd / 29772 drwxr-xr-x 512 r
jrf tcsh 21607 3% unix stream c057acc0<-> c0553280

jrf tcsh 21607 4% unix stream c0553280 <-> c057accO
root sshd 21597 wd / 2 drwxr-xr-x 512 r
root sshd 21597 0 / 11921 crw—rw-rw-— null rw
nobody httpd 5032 wd / 2 drwxr—-xr-x 512 r
nobody httpd 5032 0/ 11921 crw-rw—rw-— null r
nobody httpd 5032 1/ 11921 crw-rw—rw-— null w
nobody httpd 5032 / 15890 -rw-r--r-— 353533 rw

The fields are pretty self explanatory, again, this tool while not as performance oriented as others, can
come in handy when trying to find out information about file usage.

19.4.2 iostat

The iostat(8) command does exactly what it sounds like, it reports the status of the I/O subsystems on the
system. When iostat is employed, the user typically runs it with a certain number of counts and an
interval between them like so:

$ iostat -¢ 5 -w 5

tty wd0 cdO £d0 md0 cpu

tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s us ni sy in id
0 1 5.13 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0O 0 O 0 100

0 54 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0O 0 0 0 100

0 18 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0O 0 O 0 100

0 18 8.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0O 0 0 0 100

0 28 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0O 0 O 0 100

The above output is from a very quiet ftp server. The fields represent the various I/O devices, the tty
(which, ironically, is the most active because iostat is running), wd0 which is the primary IDE disk, c¢d0,
the cdrom drive, fdO, the floppy and the memory filesystem.

Now, let’s see if we can pummel the system with some heavy usage. First, a large ftp transaction
consisting of a tarball of netbsd-current source along with the bonnie++ disk benchmark program
running at the same time.

193

Chapter 19 Tuning NetBSD

$ iostat -¢ 5 -w 5

tty wd0 cdO £d0 md0
tin tout KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s KB/t t/s MB/s wus ni
0 1 5.68 1 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 O
0 54 61.03 150 8.92 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0
0 26 63.14 157 9.71 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0
0 20 43.58 26 1.12 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0 O
0 28 19.49 82 1.55 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 1 0

As can be expected, notice that wd0 is very active, what is interesting about this output is how the
processor’s I/O seems to rise in proportion to wd0. This makes perfect sense, however, it is worth noting
that only because this ftp server is hardly being used can that be observed. If, for example, the cpu I/O
subsystem was already under a moderate load and the disk subsystem was under the same load as it is
now, it could appear that the cpu is bottlenecked when in fact it would have been the disk. In such a case,
we can observe that "one tool" is rarely enough to completely analyze a problem. A quick glance at
processes probably would tell us (after watching iostat) which processes were causing problems.

19.4.3 ps

Using the ps(1) command or process status, a great deal of information about the system can be
discovered. Most of the time, the ps command is used to isolate a particular process by name, group,
owner etc. Invoked with no options or arguments, ps simply prints out information about the user
executing it.

$ ps
PID TT STAT TIME COMMAND
21560 p0 Is :00.04 -tcsh
21564 p0 I+ :00.37 ssh jrf.odpn.net
21598 pl Ss :00.12 —tcsh
21673 pl R+ :00.00 ps
21638 p2 Is+ :00.06 -tcsh

o O O O O

Not very exciting. The fields are self explanatory with the exception of STAT which is actually the state a
process is in. The flags are all documented in the man page, however, in the above example, [is idle, S is
sleeping, R is runnable, the + means the process is in a foreground state, and the s means the process is a
session leader. This all makes perfect sense when looking at the flags, for example, PID 21560 is a shell,
it is idle and (as would be expected) the shell is the process leader.

In most cases, someone is looking for something very specific in the process listing. As an example,
looking at all processes is specified with -a, to see all processes plus those without controlling terminals
is -ax and to get a much more verbose listing (basically everything plus information about the impact
processes are having) aux:

ps aux

USER PID %CPU $MEM VSZ RSS TT STAT STARTED TIME COMMAND

root 0 0.0 9.6 0 6260 ?? DLs 16Jul02 0:01.00 (swapper)

root 23362 0.0 0.8 144 488 2? S 12:38PM 0:00.01 ftpd -1

root 23328 0.0 0.4 428 280 pl S 12:34PM 0:00.04 -csh

jrf 23312 0.0 1.8 828 1132 pl Is 12:32PM 0:00.06 —-tcsh

root 23311 0.0 1.8 388 1156 2?2 S 12:32PM 0:01.60 sshd: jrf@ttypl
jrf 21951 0.0 1.7 244 1124 p0 S+ 4:22PM 0:02.90 ssh jrf.odpn.net

194

sy

18
20

in

w N

cpu
id
100
78
75
88
89

Chapter 19 Tuning NetBSD

jrf 21947 0.0 1.7 828 1128 p0O Is 4:21PM 0:00.04 -tcsh
root 21946 0.0 1.8 388 1156 2?72 S 4:21PM 0:04.94 sshd: jrf@ttypO
nobody 5032 0.0 2.0 1616 1300 ?? I 19Jul02 0:00.02 /usr/pkg/sbin/httpd

Again, most of the fields are self explanatory with the exception of VSZ and RSS which can be a little
confusing. RSS is the real size of a process in 1024 byte units while VSZ is the virtual size. This is all
great, but again, how can ps help? Well, for one, take a look at this modified version of the same output:

ps aux

USER PID %CPU $%MEM VSZ RSS TT STAT STARTED TIME COMMAND

root 0 0.0 9.6 0 6260 ?? DLs 16Jul02 0:01.00 (swapper)

root 23362 0.0 0.8 144 488 27? S 12:38PM 0:00.01 ftpd -1

root 23328 0.0 0.4 428 280 pl S 12:34PM 0:00.04 -csh

jrf 23312 0.0 1.8 828 1132 pl Is 12:32PM 0:00.06 —-tcsh

root 23311 0.0 1.8 388 1156 2?2 S 12:32PM 0:01.60 sshd: jrf@ttypl
jrf 21951 0.0 1.7 244 1124 p0 S+ 4:22PM 0:02.90 ssh jrf.odpn.net
jrf 21947 0.0 1.7 828 1128 p0O Is 4:21PM 0:00.04 -tcsh

root 21946 0.0 1.8 388 1156 2?2 S 4:21PM 0:04.94 sshd: jrf@ttypO
nobody 5032 9.0 2.0 1616 1300 2?2 I 19Jul02 0:00.02 /usr/pkg/sbin/httpd

Given that on this server, our baseline indicates a relatively quiet system, the PID 5032 has an unusually
large amount of %CPU. Sometimes this can also cause high TIME numbers. The ps command can be
grepped on for PIDs, username and process name and hence help track down processes that may be
experiencing problems.

19.4.4 vmstat

Using vmstat(1), information pertaining to virtual memory can be monitored and measured. Not unlike
iostat, vmstat can be invoked with a count and interval. Following is some sample output using -¢ 5 -w 5
like the iostat example:

vmstat -¢ 5 -w 5

procs memory page disks faults cpu
rbw avm fre flt re pi po fr sr wO cO0 £0 mO in sy cs us sy id
0 7 0 17716 33160 2 0 0 0 0 0 1 0 0 0 105 15 4 0 0 100
0 7 0 17724 33156 2 0 0 0 0 0 1 o0 0 0 109 6 3 0 0 100
0 7 0 17724 33156 1 0 0 0 0 0 1 0 0O 0 105 6 3 0 0 100
0 7 0 17724 33156 1 0 0 0 0 0 0 o0 0 0 107 6 3 0 0 100
0 7 0 17724 33156 1 0 0 0 0 0 0 O O 0 105 6 3 0 0 100
Yet again, relatively quiet, for posterity, the exact same load that was put on this server in the iostat
example will be used. The load is a large file transfer and the bonnie benchmark program.
vmstat -¢ 5 -w 5
procs memory page disks faults cpu
rbw avm fre flt re pi po fr sr wO cO0 £0 mO in sy cs us sy id
1 8 0 18880 31968 2 0 0 0 0 0 1 0 0 0 105 15 4 0 0 100
0 8 0 18888 31964 2 0 0 0 0 0 130 0 O O 1804 5539 1094 31 22 47
1 7 0 18888 31964 1 0 0 0 0 0 130 0 O 0 1802 5500 1060 36 16 49
1 8 0 18888 31964 1 0 0 0 0 0 160 0 O O 1849 5905 1107 21 22 57

195

Chapter 19 Tuning NetBSD

1 7 0 18888 31964 1 0 0 0 0 0175 0 0 0 1893 6167 1082 1 25 75

Just a little different. Notice, since most of the work was I/O based, the actual memory used was not very
much. Since this system uses mfs for /tmp, however, it can certainly get beat up. Have a look at this:

vmstat -¢ 5 -w 5

procs memory page disks faults cpu

rbw avm fre flt re pi po fr sr wO cO0 £0 mO in sy c¢s us sy id

0 2 0 99188 500 2 0 0 0 0 0 1 0 0 0 105 16 4 0 0 100

0 2 0111596 436 592 0 587 624 586 1210 624 0 O O 741 883 1088 0 11 89
0 3 0123976 784 666 0 662 643 683 1326 702 0 0 O 828 993 1237 0 12 88
0 2 0134692 1236 581 0 571 563 595 1158 599 0 0O O 722 863 1066 0 9 90
2 0 0142860 912 433 0 406 403 405 808 429 0 O O 552 602 768 0 7 93

Pretty scary stuff. That was created by running bonnie in /tmp on a memory based filesystem. If it
continued for too long, it is possible the system could have started thrashing. Notice that even though the
VM subsystem was taking a beating, the processors still were not getting too battered.

19.5 Network Tools

Sometimes a performance problem is not a particular machine, it is the network or some sort of device
on the network such as another host, a router etc. What other machines that provide a service or some
sort of connectivity to a particular NetBSD system do and how they act can have a very large impact on
performance of the NetBSD system itself, or the perception of performance by users. A really great
example of this is when a DNS server that a NetBSD machine is using suddenly disappears. Lookups
take long and they eventually fail. Someone logged into the NetBSD machine who is not experienced
would undoubtedly (provided they had no other evidence) blame the NetBSD system. One of my
personal favorites, “the Internet is broke” usually means either DNS service or a router/gateway has
dropped offline. Whatever the case may be, a NetBSD system comes adequately armed to deal with
finding out what network issues may be cropping up whether the fault of the local system or some other
issue.

19.5.1 ping

The classic ping(8) utility can tell us if there is just plain connectivity, it can also tell if host resolution
(depending on how nsswitch.conf dictates) is working. Following is some typical ping output on a
local network with a count of 3 specified:

ping -c 3 marie

PING marie (172.16.14.12): 56 data bytes

64 bytes from 172.16.14.12: icmp_seg=0 ttl=255 time=0.571 ms
64 bytes from 172.16.14.12: icmp_seg=1 tt1l=255 time=0.361 ms
64 bytes from 172.16.14.12: icmp_seqg=2 ttl=255 time=0.371 ms

—-——-marie PING Statistics———-—

3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.361/0.434/0.571/0.118 ms

196

Chapter 19 Tuning NetBSD

Not only does ping tell us if a host is alive, it tells us how long it took and gives some nice details at the
very end. If a host cannot be resolved, just the IP address can be specified as well:

ping -c 1 172.16.20.5
PING ash (172.16.20.5): 56 data bytes
64 bytes from 172.16.20.5: icmp_seqg=0 ttl=64 time=0.452 ms

—-——-—-ash PING Statistics-———-
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.452/0.452/0.452/0.000 ms

Now, not unlike any other tool, the times are very subjective, especially in regards to networking. For
example, while the times in the examples are good, take a look at the localhost ping:

ping -c 4 localhost
PING localhost (127.
64 bytes from 127.0.
64 bytes from 127.0
64 bytes from 127.0.
64 bytes from 127.0

0.1): 56 data bytes

1: icmp_seqg=0 ttl=255 time=0.091 ms
.1: icmp_seg=1 ttl=255 time=0.129 ms
1: icmp_seg=2 ttl=255 time=0.120 ms
1: icmp_seqg=3 ttl=255 time=0.122 ms

o O O O O

———-localhost PING Statistics———-
4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.091/0.115/0.129/0.017 ms

Much smaller because the request never left the machine. Pings can be used to gather information about
how well a network is performing. It is also good for problem isolation, for instance, if there are three
relatively close in size NetBSD systems on a network and one of them simply has horrible ping times,
chances are something is wrong on that one particular machine.

19.5.2 traceroute

The traceroute(8) command is great for making sure a path is available or detecting problems on a
particular path. As an example, here is a trace between the example ftp server and ftp.NetBSD.org:

traceroute ftp.NetBSD.org
traceroute to ftp.NetBSD.org (204.152.184.75), 30 hops max, 40 byte packets
1 208.44.95.1 (208.44.95.1) 1.646 ms 1.492 ms 1.456 ms

2 63.144.65.170 (63.144.65.170) 7.318 ms 3.249 ms 3.854 ms

3 chcgOl-edgel8.il.inet.qwest.net (65.113.85.229) 35.982 ms 28.667 ms 21.971 ms
4 chcgOl-coreOl.il.inet.gwest.net (205.171.20.1) 22.607 ms 26.242 ms 19.631 ms

5 snvaOl-coreOl.ca.inet.gwest.net (205.171.8.50) 78.586 ms 70.585 ms 84.779 ms

6 snvaOl-coreO3.ca.inet.gwest.net (205.171.14.122) 69.222 ms 85.739 ms 75.979 ms
7 paix0l-brdr02.ca.inet.gwest.net (205.171.205.30) 83.882 ms 67.739 ms 69.937 ms
8 198.32.175.3 (198.32.175.3) 72.782 ms 67.687 ms 73.320 ms

9 s0-1-0-0.orpa8.pf.isc.org (192.5.4.231) 78.007 ms 81.860 ms 77.069 ms
10 tunO.orrcS.pf.isc.org (192.5.4.165) 70.808 ms 75.151 ms 81.485 ms
11 ftp.NetBSD.org (204.152.184.75) 69.700 ms 69.528 ms 77.788 ms

All in all, not bad. The trace went from the host to the local router, then out onto the provider network
and finally out onto the Internet looking for the final destination. How to interpret traceroutes, again, are
subjective, but abnormally high times in portions of a path can indicate a bottleneck on a piece of

197

Chapter 19 Tuning NetBSD

network equipment. Not unlike ping, if the host itself is suspect, run traceroute from another host to the
same destination. Now, for the worst case scenario:

traceroute www.microsoft.com

traceroute: Warning: www.microsoft.com has multiple addresses; using 207.46.230.220

traceroute to www.microsoft.akadns.net (207.46.230.220), 30 hops max, 40 byte packets
1 208.44.95.1 (208.44.95.1) 2.517 ms 4.922 ms 5.987 ms
2 63.144.65.170 (63.144.65.170) 10.981 ms 3.374 ms 3.249 ms
3 chcg0Ol-edgel8.il.inet.gqwest.net (65.113.85.229) 37.810 ms 37.505 ms 20.795 ms
4 chcgOl-core03.il.inet.gwest.net (205.171.20.21) 36.987 ms 32.320 ms 22.430 ms
5 chcg0l-brdr03.il.inet.qwest.net (205.171.20.142) 33.155 ms 32.859 ms 33.462 ms
6 205.171.1.162 (205.171.1.162) 39.265 ms 20.482 ms 26.084 ms
7 sl-bb24-chi-13-0.sprintlink.net (144.232.26.85) 26.681 ms 24.000 ms 28.975 ms
8 sl-bb2l-sea-10-0.sprintlink.net (144.232.20.30) 65.329 ms 69.694 ms 76.704 ms
9 sl-bb2l-tac-9-1l.sprintlink.net (144.232.9.221) 65.659 ms 66.797 ms 74.408 ms

10 144.232.187.194 (144.232.187.194) 104.657 ms 89.958 ms 91.754 ms

11 207.46.154.1 (207.46.154.1) 89.197 ms 84.527 ms 81.629 ms

12 207.46.155.10 (207.46.155.10) 78.090 ms 91.550 ms 89.480 ms

13 * Kk x

In this case, the Microsoft server cannot be found either because of multiple addresses or somewhere
along the line a system or server cannot reply to the information request. At that point, one might think to
try ping, in the Microsoft case, a ping does not reply, that is because somewhere on their network ICMP
is most likely disabled.

19.5.3 netstat

Another problem that can crop up on a NetBSD system is routing table issues. These issues are not
always the systems fault. The route(8) and netstat(1) commands can show information about routes and
network connections (respectively).

The route command can be used to look at and modify routing tables while netstat can display
information about network connections and routes. First, here is some output from route show:

route show
Routing tables

Internet:

Destination Gateway Flags
default 208.44.95.1 UG
loopback 127.0.0.1 UG
localhost 127.0.0.1 UH
172.15.13.0 172.16.14.37 UG
172.16.0.0 link#2 U
172.16.14.8 0:80:d3:cc:2c:0 UH
172.16.14.10 link#2 UH
marie 0:10:83:f9:6f:2c UH
172.16.14.37 0:5:32:8£:d2:35 UH
172.16.16.15 link#2 UH
loghost 8:0:20:a7:£f0:75 UH
artemus 8:0:20:a8:d:7e UH

198

ash
208.44.95.0
208.44.95.1
208.44.95.2
208.44.95.25

Internet6:
Destination
default
default
localhost
::127.0.0.0
::224.0.0.0
::255.0.0.0
::ff£f£:0.0.0.0
2002::
2002:7£00::
2002:e000::
2002:££00::
fe80::
fe80: :%ex0
fe80::%exl
fe80::%100
fecO::
f£f01::
f£f02::%ex0
ff02::%exl
££f02::%100

0:p0:d0:de:49:df
link#1
0:4:27:3:94:20
0:5:32:8f£:d2:34
0:c0:4£:10:79:92

Gateway
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
localhost
link#1l
link#2
fe80::1%100
localhost
localhost
link#1
link#2
fe80::1%100

UH

UH
UH
UH

Flags
UG
UG
UH
UG
UG
UG
UG
UG
UG
UG
UG
UG

c c

c o acca

Chapter 19 Tuning NetBSD

The flags section shows the status and whether or not it is a gateway. In this case we see U, H and G (U is

up, H is host and G is gateway, see the man page for additional flags).

Now for some netstat output using the -r (routing) and -n (show network numbers) options:

Routing tables

Internet:
Destination
default

127
127.0.0.1
172.15.13/24
172.16

Interneté6:
Destination

Mtu Interface
::/104
33228
::/96

lo0 =>

Gateway
208.44.95.1
127.0.0.1
127.0.0.1
172.16.14.37
link#2

Flags Refs
UGs 0
UGRS 0
UH 1
UGS 0
uc 13

Gateway

Use Mtu Interface
330309 1500 ex0
0 33228 100
1624 33228 100

0 1500 exl
0 1500 exl

Flags Refs Use
UGRS 0 0
UGRS 0 0

The above output is a little more verbose. So, how can this help? Well, a good example is when routes
between networks get changed while users are connected. I saw this happen several times when someone

199

Chapter 19 Tuning NetBSD

was rebooting routers all day long after each change. Several users called up saying they were getting
kicked out and it was taking very long to log back in. As it turned out, the clients connecting to the
system were redirected to another router (which took a very long route) to reconnect. I observed the M
flag or Modified dynamically (by redirect) on their connections. I deleted the routes, had them reconnect
and summarily followed up with the offending technician.

19.5.4 tcpdump

Last, and definitely not least is tcpdump(8), the network sniffer that can retrieve a lot of information. In
this discussion, there will be some sample output and an explanation of some of the more useful options
of tcpdump.

Following is a small snippet of tcpdump in action just as it starts:

tcpdump

tcpdump: listening on exO

14:07:29.920651 mail.ssh > 208.44.95.231.3551: P 2951836801:2951836845(44) ack 2
476972923 win 17520 <nop,nop,timestamp 1219259 128519450> [tos 0x10]
14:07:29.950594 12.125.61.34 > 208.44.95.16: ESP (spi=2548773187,segq=0x3e8c) (DF)

14:07:29.983117 smtp.somecorp.com.smtp > 208.44.95.30.42828: . ack 420285166 win
16500 (DF)
14:07:29.984406 208.44.95.30.42828 > smtp.somecorp.com.smtp: . 1:1376(1375) ack O

win 7431 (DF)

Given that the particular server is a mail server, what is shown makes perfect sense, however, the utility
is very verbose, I prefer to initially run tcpdump with no options and send the text output into a file for
later digestion like so:

tcpdump > tcpdump.out
tcpdump: listening on ex0

So, what precisely in the mish mosh are we looking for? In short, anything that does not seem to fit, for
example, messed up packet lengths (as in a lot of them) will show up as improper lens or malformed
packets (basically garbage). If, however, we are looking for something specific, tcpdump may be able to
help depending on the problem.

19.5.4.1 Specific tcpdump Usage
These are just examples of a few things one can do with tcpdump.

Look for duplicate IP addresses:
tcpdump -e host ip-address
For example:

tcpdump -e host 192.168.0.2
Routing Problems:

tcpdump icmp

200

Chapter 19 Tuning NetBSD

There are plenty of third party tools available, however, NetBSD comes shipped with a good tool set for
tracking down network level performance problems.

19.6 Accounting

The NetBSD system comes equipped with a great deal of performance monitors for active monitoring,
but what about long term monitoring? Well, of course the output of a variety of commands can be sent to
files and re-parsed later with a meaningful shell script or program. NetBSD does, by default, offer some
extraordinarily powerful low level monitoring tools for the programmer, administrator or really astute
hobbyist.

19.6.1 Accounting

While accounting gives system usage at an almost userland level, kernel profiling with gprof provides
explicit system call usage.

Using the accounting tools can help figure out what possible performance problems may be lying in wait,
such as increased usage of compilers or network services for example.

Starting accounting is actually fairly simple, as root, use the accton(8) command. The syntax to start
accounting is: accton filename

Where accounting information is appended to filename, now, strangely enough, the lastcomm command
which reads from an accounting output file, by default, looks in /var/account/acct so I tend to just
use the default location, however, lastcomm can be told to look elsewhere.

To stop accounting, simply type accton with no arguments.

19.6.2 Reading Accounting Information

To read accounting information, there are two tools that can be used:

« lastcomm(1)

« sa(8)

19.6.2.1 lastcomm

The lastcomm command shows the last commands executed in order, like all of them. It can, however,
select by user, here is some sample output:

$ lastcomm jrf

last - jrf ttyp3 0.00 secs Tue Sep 3 14:39 (0:00:00.02)
man - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
sh - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
less - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:01:49.03)
lastcomm - jrf ttyp3 0.02 secs Tue Sep 3 14:38 (0:00:00.02)
stty - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:00.02)
tset - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:01.05)

201

Chapter 19 Tuning NetBSD

hostname - jrf ttyp3 0.00 secs Tue Sep 3 14:38 (0:00:00.02)
1s - jrf ttyp0 0.00 secs Tue Sep 3 14:36 (0:00:00.00)

Pretty nice, the lastcomm command gets its information from the default location of /var/account/acct,
however, using the -f option, another file may be specified.

As may seem obvious, the output of lastcomm could get a little heavy on large multi user systems. That
is where sa comes into play.

19.6.2.2 sa

The sa command (meaning "print system accounting statistics") can be used to maintain information. It
can also be used interactively to create reports. Following is the default output of sa:

$ sa

77 18.62re 0.02cp 8avio 0k

3 4.27re 0.01lcp 45avio 0k ispell

2 0.68re 0.00cp 33avio 0k mutt

2 1.09re 0.00cp 23avio 03 vi

10 0.61lre 0.00cp 7avio Ok ***xother
2 0.01re 0.00cp 29%avio Ok exim

4 0.00re 0.00cp 8avio Ok lastcomm
2 0.00re 0.00cp 3avio 0k atrun

3 0.03re 0.00cp lavio Ok cronx

5 0.02re 0.00cp 10avio 0k eximx*

10 3.98re 0.00cp 2avio (033 less

11 0.00re 0.00cp O0avio 0k 1ls

9 3.95re 0.00cp 12avio Ok man

2 0.00re 0.00cp 4avio Ok sa

12 3.97re 0.00cp lavio 0k sh

From left to right, total times called, real time in minutes, sum of user and system time, in minutes,
Average number of I/O operations per execution, size, command name.

The sa command can also be used to create summary files or reports based on some options, for example,
here is the output when specifying a sort by CPU-time average memory usage:

$ sa -k
86 30.81re 0.02cp 8avio 0k
10 0.61re 0.00cp Tavio Ok ***other
2 0.00re 0.00cp 3avio Ok atrun
3 0.03re 0.00cp lavio 0k cronx
2 0.01lre 0.00cp 29%avio Ok exim
5 0.02re 0.00cp 10avio 0k exim#*
3 4.27re 0.01lcp 45avio 0k ispell
4 0.00re 0.00cp 8avio Ok lastcomm
12 8.04re 0.00cp 2avio 0k less
13 0.00re 0.00cp Oavio Ok 1s
11 8.01lre 0.00cp 12avio 0k man
2 0.68re 0.00cp 33avio Ok mutt
3 0.00re 0.00cp 4avio 0k sa

202

Chapter 19 Tuning NetBSD

14 8.03re 0.00cp lavio (033 sh
2 1.09re 0.00cp 23avio 0k vi

The sa command is very helpful on larger systems.

19.6.3 How to Put Accounting to Use

Accounting reports, as was mentioned earlier, offer a way to help predict trends, for example, on a
system that has cc and make being used more and more may indicate that in a few months some changes
will need to be made to keep the system running at an optimum level. Another good example is web
server usage. If it begins to gradually increase, again, some sort of action may need to be taken before it
becomes a problem. Luckily, with accounting tools, said actions can be reasonably predicted and planned
for ahead of time.

19.7 Kernel Profiling

Profiling a kernel is normally employed when the goal is to compare the difference of new changes in the
kernel to a previous one or to track down some sort of low level performance problem. Two sets of data
about profiled code behavior are recorded independently: function call frequency and time spent in each
function.

19.7.1 Getting Started

First, take a look at both Section 19.9 and Chapter 34. The only difference in procedure for setting up a
kernel with profiling enabled is when you run config add the -p option. The build area is
../compile/<KERNEL_NAME>.PROF , for example, a GENERIC kernel would be
../compile/GENERIC.PROF.

Following is a quick summary of how to compile a kernel with profiling enabled on the amd64 port, the
assumptions are that the appropriate sources are available under /usr/src and the GENERIC
configuration is being used, of course, that may not always be the situation:

l.ed /usr/src/sys/arch/amdé64/conf
2. config -p GENERIC

3.ed ../compile/GENERIC.PROF

4. make depend && make

5.cp /netbsd /netbsd.old

6. cp netbsd /

7. reboot

Once the new kernel is in place and the system has rebooted, it is time to turn on the monitoring and start
looking at results.

203

Chapter 19 Tuning NetBSD
19.7.1.1 Using kgmon
To start kgmon:

$ kgmon -b
kgmon: kernel profiling is running.

Next, send the data into the file gmon . out:
$ kgmon -p

Now, it is time to make the output readable:
$ gprof /netbsd > gprof.out

Since gmon is looking for gmon . out, it should find it in the current working directory.

By just running kgmon alone, you may not get the information you need, however, if you are comparing
the differences between two different kernels, then a known good baseline should be used. Note that it is
generally a good idea to stress the subsystem if you know what it is both in the baseline and with the
newer (or different) kernel.

19.7.2 Interpretation of kgmon Output

Now that kgmon can run, collect and parse information, it is time to actually look at some of that
information. In this particular instance, a GENERIC kernel is running with profiling enabled for about an
hour with only system processes and no adverse load, in the fault insertion section, the example will be
large enough that even under a minimal load detection of the problem should be easy.

19.7.2.1 Flat Profile

The flat profile is a list of functions, the number of times they were called and how long it took (in
seconds). Following is sample output from the quiet system:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ns/call ns/call name

99.77 163.87 163.87 idle
0.03 163.92 0.05 219 228310.50 228354.34 _wdc_ata_bio_start
0.02 163.96 0.04 219 182648.40 391184.96 wdc_ata_bio_intr
0.01 163.98 0.02 3412 5861.66 6463.02 pmap_enter
0.01 164.00 0.02 548 36496.35 36496.35 pmap_zero_page
0.01 164.02 0.02 Xspllower
0.01 164.03 0.01 481968 20.75 20.75 gettick
0.01 164.04 0.01 6695 1493.65 1493.65 VOP_LOCK
0.01 164.05 0.01 3251 3075.98 21013.45 syscall_plain

As expected, idle was the highest in percentage, however, there were still some things going on, for
example, a little further down there is the vn_lock function:

204

Chapter 19 Tuning NetBSD

0.00 164.14 0.00 6711 0.00 0.00 VOP_UNLOCK

0.00 164.14 0.00 6677 0.00 1493.65 wvn_lock
0.00 164.14 0.00 6441 0.00 0.00 genfs_unlock

This is to be expected, since locking still has to take place, regardless.

19.7.2.2 Call Graph Profile

The call graph is an augmented version of the flat profile showing subsequent calls from the listed
functions. First, here is some sample output:

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.01% of 164.14 seconds

index % time self children called name
<spontaneous>
[1] 99.8 163.87 0.00 idle [1]
<spontaneous>
[2] 0.1 0.01 0.08 syscalll [2]
0.01 0.06 3251/3251 syscall_plain [7]
0.00 0.01 414/1660 trap [9]
0.00 0.09 219/219 Xintrld [6]
[3] 0.1 0.00 0.09 219 pciide_compat_intr [3]
0.00 0.09 219/219 wdcintr [5]

Now this can be a little confusing. The index number is mapped to from the trailing number on the end of
the line, for example,

0.00 0.01 85/85 dofilewrite [68]
[72] 0.0 0.00 0.01 85 soo_write [72]
0.00 0.01 85/89 sosend [71]

Here we see that dofilewrite was called first, now we can look at the index number for 64 and see what
was happening there:

0.00 0.01 101/103 ffs_full_ fsync <cycle 6> [58]
[64] 0.0 0.00 0.01 103 bawrite [64]
0.00 0.01 103/105 VOP_BWRITE [60]

And so on, in this way, a "visual trace" can be established.

205

Chapter 19 Tuning NetBSD

At the end of the call graph right after the terms section is an index by function name which can help
map indexes as well.

19.7.3 Putting it to Use

In this example, I have modified an area of the kernel I know will create a problem that will be blatantly
obvious.

Here is the top portion of the flat profile after running the system for about an hour with little interaction
from users:

Flat profile:

Each sample counts as 0.0l seconds.

% cumulative self self total

time seconds seconds calls wus/call wus/call name

93.97 139.13 139.13 idle
5.87 147.82 8.69 23 377826.09 377842.52 check_exec
0.01 147.84 0.02 243 82.30 82.30 pmap_copy_page
0.01 147.86 0.02 131 152.67 152.67 _wdc_ata_bio_start
0.01 147.88 0.02 131 152.67 271.85 wdc_ata_bio_intr
0.01 147.89 0.01 4428 2.26 2.66 wuvn_findpage
0.01 147.90 0.01 4145 2.41 2.41 uvm_pageactivate
0.01 147.91 0.01 2473 4.04 3532.40 syscall_plain
0.01 147.92 0.01 1717 5.82 5.82 1486_copyout
0.01 147.93 0.01 1430 6.99 56.52 uvm_fault
0.01 147.94 0.01 1309 7.64 7.64 pool_get
0.01 147.95 0.01 673 14.86 38.43 genfs_getpages
0.01 147.96 0.01 498 20.08 20.08 pmap_zero_page
0.01 147.97 0.01 219 45.66 46.28 uvm_unmap_remove
0.01 147.98 0.01 111 90.09 90.09 selscan

As is obvious, there is a large difference in performance. Right off the bat the idle time is noticeably less.
The main difference here is that one particular function has a large time across the board with very few
calls. That function is check_exec. While at first, this may not seem strange if a lot of commands had
been executed, when compared to the flat profile of the first measurement, proportionally it does not
seem right:

0.00 164.14 0.00 37 0.00 62747.49 check_exec

The call in the first measurement is made 37 times and has a better performance. Obviously something in
or around that function is wrong. To eliminate other functions, a look at the call graph can help, here is
the first instance of check_exec

0.00 8.69 23/23 syscall_plain [3]
[4] 5.9 0.00 8.69 23 sys_execve [4]

206

Chapter 19 Tuning NetBSD

8.69 0.00 23/23 check_exec [5]
0.00 0.00 20/20 elf32_copyargs [67]

Notice how the time of 8.69 seems to affect the two previous functions. It is possible that there is
something wrong with them, however, the next instance of check_exec seems to prove otherwise:

8.69 0.00 23/23 sys_execve [4]
[5] 5.9 8.69 0.00 23 check_exec [5]

Now we can see that the problem, most likely, resides in check_exec. Of course, problems are not always
this simple and in fact, here is the simpleton code that was inserted right after check_exec (the function is

in sys/kern/kern_exec.c):

/* A Cheap fault insertion =*/
for (x = 0; x < 100000000; x++) {

y = X;

Not exactly glamorous, but enough to register a large change with profiling.

19.7.4 Summary

Kernel profiling can be enlightening for anyone and provides a much more refined method of hunting
down performance problems that are not as easy to find using conventional means, it is also not nearly as
hard as most people think, if you can compile a kernel, you can get profiling to work.

19.8 System Tuning

Now that monitoring and analysis tools have been addressed, it is time to look into some actual methods.
In this section, tools and methods that can affect how the system performs that are applied without
recompiling the kernel are addressed, the next section examines kernel tuning by recompiling.

19.8.1 Using sysctl

The sysctl utility can be used to look at and in some cases alter system parameters. There are so many
parameters that can be viewed and changed they cannot all be shown here, however, for the first example
here is a simple usage of sysctl to look at the system PATH environment variable:

$ sysctl user.cs_path
user.cs_path = /usr/bin:/bin:/usr/sbin:/sbin:/usr/pkg/bin:/usr/pkg/sbin:/usr/local/bin:/usr

207

Chapter 19 Tuning NetBSD

Fairly simple. Now something that is actually related to performance. As an example, let’s say a system
with many users is having file open issues, by examining and perhaps raising the kern.maxfiles parameter
the problem may be fixed, but first, a look:

$ sysctl kern.maxfiles
kern.maxfiles = 1772

Now, to change it, as root with the -w option specified:

sysctl -w kern.maxfiles=1972
kern.maxfiles: 1772 -> 1972

Note, when the system is rebooted, the old value will return, there are two cures for this, first, modify
that parameter in the kernel and recompile, second (and simpler) add this line to /etc/sysctl.conf:

kern.maxfiles=1972

19.8.2 tmpfs & mfs

NetBSD’s "ramdisk"” implementations cache all data in the RAM, and if that is full, the swap space is
used as backing store. NetBSD comes with two implementations, the traditional BSD memory-based file
system "mfs" and the more modern "tmpfs". While the former can only grow in size, the latter can also
shrink if space is no longer needed.

When to use and not to use a memory based filesystem can be hard on large multi user systems. In some
cases, however, it makes pretty good sense, for example, on a development machine used by only one
developer at a time, the obj directory might be a good place, or some of the tmp directories for builds. In
a case like that, it makes sense on machines that have a fair amount of RAM on them. On the other side
of the coin, if a system only has 16MB of RAM and /var/tmp is mfs-based, there could be severe
applications issues that occur.

The GENERIC kernel has both tmpfs and mfs enabled by default. To use it on a particular directory first
determine where the swap space is that you wish to use, in the example case, a quick look in
/etc/fstab indicates that /dev/wd0b is the swap partition:

mail% cat /etc/fstab
/dev/wd0a / ffs rw 1 1
/dev/wd0b none swap sw 0 0
/kern /kern kernfs rw

This system is a mail server so I only want to use /tmp with tmpfs, also on this particular system I have
linked /tmp to /var/tmp to save space (they are on the same drive). All I need to do is add the
following entry:

/dev/wd0b /var/tmp tmpfs rw 0 0

If you want to use "mfs" instead of "tmpfs", put just that into the above place.

Now, a word of warning: make sure said directories are empty and nothing is using them when you
mount the memory file system! After changing /etc/£fstab, you can either run mount -a or reboot the
system.

208

Chapter 19 Tuning NetBSD

19.8.3 Journaling

Journaling is a mechanism which puts written data in a so-called "journal" first, and in a second step the
data from the journal is written to disk. In the event of a system crash, data that was not written to disk
but that is in the journal can be replayed, and will thus get the disk into a proper state. The main effect of
this is that no file system check (fsck) is needed after a rough reboot.

Journaling can be enabled by adding "log" to the filesystem options in /etc/fstab. Here is an example
which enables journaling for the root (/), /var, and /usr file systems:

/dev/wd0a / ffs rw,log 1 1
/dev/wdl0e /var ffs rw,log 1 2
/dev/wdOg /usr ffs rw,log 1 2

19.8.4LFS

LFS, the log structured filesystem, writes data to disk in a way that is sometimes too aggressive and leads
to congestion. To throttle writing, the following sysctls can be used:

vfs.sync.delay
vis.sync.filedelay
vfs.sync.dirdelay
vfs.sync.metadelay
vfs.lfs.flushindir
vfs.lfs.clean_vnhead
vis.lfs.dostats
vis.lfs.pagetrip
vfs.lfs.stats.segsused
vfs.lfs.stats.psegwrites
vis.lfs.stats.psyncwrites
vfs.lfs.stats.pcleanwrites
vis.lfs.stats.blocktot
vis.lfs.stats.cleanblocks
vfs.lfs.stats.ncheckpoints
vfis.lfs.stats.nwrites
vfs.lfs.stats.nsync_writes
vis.lfs.stats.wait_exceeded
vfs.lfs.stats.write_exceeded
vfs.lfs.stats.flush_invoked
vfs.lfs.stats.vflush_invoked
vfs.lfs.stats.clean_inlocked
vis.lfs.stats.clean_vnlocked
vfs.lfs.stats.segs_reclaimed
vfs.lfs.ignore_lazy_sync

Besides tuning those parameters, disabling write-back caching on wd(4) devices may be beneficial. See
the dkctl(8) man page for details.

More is available in the NetBSD mailing list archives. See this
(http://mail-index.NetBSD.org/tech-perform/2007/04/01/0000.html) and this
(http://mail-index.NetBSD.org/tech-perform/2007/04/01/0001.html) mail.

209

Chapter 19 Tuning NetBSD

19.9 Kernel Tuning

While many system parameters can be changed with sysctl, many improvements by using enhanced
system software, layout of the system and managing services (moving them in and out of inetd for
example) can be achieved as well. Tuning the kernel however will provide better performance, even if it
appears to be marginal.

19.9.1 Preparing to Recompile a Kernel

First, get the kernel sources for the release as described in Chapter 32, reading Chapter 34 for more
information on building the kernel is recommended. Note, this document can be used for -current tuning,
however, a read of the Tracking -current (http://www.NetBSD.org/docs/current/) documentation should
be done first, much of the information there is repeated here.

19.9.2 Configuring the Kernel

Configuring a kernel in NetBSD can be daunting. This is because of multiple line dependencies within
the configuration file itself, however, there is a benefit to this method and that is, all it really takes is an
ASCII editor to get a new kernel configured and some dmesg output. The kernel configuration file is
under src/sys/arch/ARCH/conf where ARCH is your architecture (for example, on a SPARC it
would be under src/sys/arch/sparc/conf).

After you have located your kernel config file, copy it and remove (comment out) all the entries you
don’t need. This is where dmesg(8) becomes your friend. A clean dmesg(8)-output will show all of the
devices detected by the kernel at boot time. Using dmesg(8) output, the device options really needed can
be determined.

19.9.2.1 Some example Configuration ltems

In this example, an ftp server’s kernel is being reconfigured to run with the bare minimum drivers and
options and any other items that might make it run faster (again, not necessarily smaller, although it will
be). The first thing to do is take a look at some of the main configuration items. So, in
/usr/src/sys/arch/amd64/conf the GENERIC file is copied to FTP, then the file FTP edited.

At the start of the file there are a bunch of options beginning with maxusers, which will be left alone,
however, on larger multi-user systems it might be help to crank that value up a bit. Next is CPU support,
looking at the dmesg output this is seen:

cpul: Intel Pentium II/Celeron (Deschutes) (686-class), 400.93 MHz

Indicating that only the options 1686_CPU options needs to be used. In the next section, all options are
left alone except the PIC_DELAY which is recommended unless it is an older machine. In this case it is
enabled since the 686 is “relatively new.”

Between the last section all the way down to compat options there really was no need to change anything
on this particular system. In the compat section, however, there are several options that do not need to be
enabled, again this is because this machine is strictly a FTP server, all compat options were turned off.

The next section is File systems, and again, for this server very few need to be on, the following were left
on:

210

Chapter 19 Tuning NetBSD

File systems

file-system FFS # UFS

file-system LFS # log-structured file system
file-system MF'S # memory file system

file-system CD9660 # ISO 9660 + Rock Ridge file system
file-system FDESC # /dev/fd

file-system KERNF'S # /kern

file-system NULLFS # loopback file system

file-system PROCF'S # /proc

file-system UMAPFS # NULLFS + uid and gid remapping
options SOFTDEP # FFS soft updates support.

Next comes the network options section. The only options left on were:

options INET # IP + ICMP + TCP + UDP
options INET6 # IPV6
options IPFILTER_LOG # ipmon(8) log support

IPFILTER_LOG is a nice one to have around since the server will be running ipf.

The next section is verbose messages for various subsystems, since this machine is already running and
had no major problems, all of them are commented out.

19.9.2.2 Some Drivers

The configurable items in the config file are relatively few and easy to cover, however, device drivers are
a different story. In the following examples, two drivers are examined and their associated “areas” in the
file trimmed down. First, a small example: the cdrom, in dmesg, is the following lines:

cd0 at atapibusO drive 0: <CD-540E, , 1.0A> type 5 cdrom removable

cd0: 32-bit data port

cd0: drive supports PIO mode 4, DMA mode 2, Ultra-DMA mode 2

pciideO: secondary channel interrupting at irqg 15

cdO (pciide0:1:0): using PIO mode 4, Ultra-DMA mode 2 (using DMA data transfer

Now, it is time to track that section down in the configuration file. Notice that the "cd"-drive is on an
atapibus and requires pciide support. The section that is of interest in this case is the kernel config’s "IDE
and related devices" section. It is worth noting at this point, in and around the IDE section are also ISA,
PCMCIA etc., on this machine in the dmesg(8) output there are no PCMCIA devices, so it stands to
reason that all PCMCIA references can be removed. But first, the "cd" drive.

At the start of the IDE section is the following:

wd* at atabus? drive ? flags 0x0000

atapibusx at atapi?

211

Chapter 19 Tuning NetBSD

Well, it is pretty obvious that those lines need to be kept. Next is this:

ATAPI devices
flags have the same meaning as for IDE drives.

cdx* at atapibus? drive ? flags 0x0000 # ATAPI CD-ROM drives
sdx at atapibus? drive ? flags 0x0000 # ATAPI disk drives
st* at atapibus? drive ? flags 0x0000 # ATAPI tape drives
uk at atapibus? drive ? flags 0x0000 # ATAPI unknown

The only device type that was in the dmesg(8) output was the cd, the rest can be commented out.

The next example is slightly more difficult, network interfaces. This machine has two of them:

ex0 at pci0 dev 17 function 0: 3Com 3c905B-TX 10/100 Ethernet (rev. 0x64)
ex0: interrupting at irg 10

ex0: MAC address 00:50:04:83:ff:b7

UI 0x001018 model 0x0012 rev 0 at ex0 phy 24 not configured

exl at pciO dev 19 function 0: 3Com 3c905B-TX 10/100 Ethernet (rev. 0x30)
exl: interrupting at irg 11

exl: MAC address 00:50:da:63:91:2e

exphy0 at exl phy 24: 3Com internal media interface

exphy0O: 1l0baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, auto

At first glance it may appear that there are in fact three devices, however, a closer look at this line:
exphy0 at exl phy 24: 3Com internal media interface

Reveals that it is only two physical cards, not unlike the cdrom, simply removing names that are not in
dmesg will do the job. In the beginning of the network interfaces section is:

Network Interfaces

PCI network interfaces

anx at pci? dev ? function ? # Aironet PC4500/PC4800 (802.11)
bgex at pci? dev ? function ? # Broadcom 570x gigabit Ethernet
enx at pci? dev ? function ? # ENI/Adaptec ATM

epx* at pci? dev ? function ? # 3Com 3cbH9x

epicx at pci? dev ? function ? # SMC EPIC/100 Ethernet

eshx* at pci? dev ? function ? # Essential HIPPI card

exx* at pci? dev ? function ? # 3Com 90x[BC]

There is the ex device. So all of the rest under the PCI section can be removed. Additionally, every single
line all the way down to this one:

exphy* at mii? phy 2 # 3Com internal PHYs

can be commented out as well as the remaining.

212

Chapter 19 Tuning NetBSD

19.9.2.3 Multi Pass

When I tune a kernel, I like to do it remotely in an X windows session, in one window the dmesg output,
in the other the config file. It can sometimes take a few passes to rebuild a very trimmed kernel since it is
easy to accidentally remove dependencies.

19.9.3 Building the New Kernel

Now it is time to build the kernel and put it in place. In the conf directory on the ftp server, the following
command prepares the build:

$ config FTP
When it is done a message reminding me to make depend will display, next:

$ ed ../compile/FTP
$ make depend && make

When it is done, I backup the old kernel and drop the new one in place:

cp /netbsd /netbsd.orig
cp netbsd /

Now reboot. If the kernel cannot boot, stop the boot process when prompted and type boot
netbsd.orig to boot from the previous kernel.

19.9.4 Shrinking the NetBSD kernel

When building a kernel for embedded systems, it’s often necessary to modify the Kernel binary to reduce
space or memory footprint.

19.9.4.1 Removing ELF sections and debug information

We already know how to remove Kernel support for drivers and options that you don’t need, thus saving
memory and space, but you can save some KiloBytes of space by removing debugging symbols and two
ELF sections if you don’t need them: . comment and . ident. They are used for storing RCS strings
viewable with ident(1) and a gcc(1) version string. The following examples assume you have your
TOOLDIR under /usr/src/tooldir.NetBSD-2.0-1386 and the target architecture is i386.

$ /usr/src/tooldir.NetBSD-2.0-i386/bin/i386--netbsdelf-objdump -h /netbsd

/netbsd: file format elf32-1386
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0057a374 c0100000 c0100000 00001000 2x%4
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .rodata 00131433 c067a380 c067a380 0057b380 2xx5

CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .rodata.strl.l 00035ea0 c07ab7b3 <c07ab7b3 006ac7b3 2%x*0

213

Chapter 19 Tuning NetBSD

CONTENTS, ALLOC, LOAD, READONLY, DATA
3 .rodata.strl.32 00059d13 c07el660 c07el660 006e2660 2x%x5
CONTENTS, ALLOC, LOAD, READONLY, DATA
4 link_set_malloc_types 00000198 c083b374 <c083b374 0073c374 2%%2
CONTENTS, ALLOC, LOAD, READONLY, DATA
5 link_set_domains 00000024 c083b50c c083b50c 0073c50c 2xx2
CONTENTS, ALLOC, LOAD, READONLY, DATA
6 link_set_pools 00000158 c083b530 c083b530 0073c530 2%x%2
CONTENTS, ALLOC, LOAD, READONLY, DATA
7 link_set_sysctl_funcs 000000f0 c083b688 c083b688 0073c688 2%%2
CONTENTS, ALLOC, LOAD, READONLY, DATA
8 link_set_vfsops 00000044 c083b778 <c083b778 0073c778 2%x%2
CONTENTS, ALLOC, LOAD, READONLY, DATA
9 link_set_dkwedge_methods 00000004 c083b7bc c083b7bc 0073c7bc 2xx2
CONTENTS, ALLOC, LOAD, READONLY, DATA
10 link_set_bufqg _strats 0000000c c083b7c0 c083b7c0 0073c7c0 2%%2
CONTENTS, ALLOC, LOAD, READONLY, DATA
11 link_set_evcnts 00000030 c083b7cc c¢c083b7cc 0073c7cc 2%x2
CONTENTS, ALLOC, LOAD, READONLY, DATA

12 .data 00048ae4 c083c800 <c083c800 0073c800 2%%5
CONTENTS, ALLOC, LOAD, DATA

13 .bss 00058974 c0885300 0885300 00785300 2%%5
ALLOC

14 .comment 0000cda0 00000000 00000000 00785300 2%%0
CONTENTS, READONLY

15 .ident 00011%9e4 00000000 00000000 007920a0 2%%0

CONTENTS, READONLY

On the third column we can see the size of the sections in hexadecimal form. By summing . comment
and . ident sizes we know how much we’re going to save with their removal: around 120KB (= 52640
+ 72164 = Oxcda0 + 0x119e4). To remove the sections and debugging symbols that may be present,
we’re going to use strip(1):

cp /netbsd /netbsd.orig

/usr/src/tooldir.NetBSD-2.0-i386/bin/i386-—-netbsdelf-strip -S -R .ident -R .comment /netbsd
1ls -1 /netbsd /netbsd.orig

—rwxr-xr-x 1 root wheel 8590668 Apr 30 15:56 netbsd

—rwxr-xr-x 1 root wheel 8757547 Apr 30 15:56 netbsd.orig

Since we also removed debugging symbols, the total amount of disk space saved is around 160KB.

19.9.4.2 Compressing the Kernel

On some architectures, the bootloader can boot a compressed kernel. You can save several MegaBytes of
disk space by using this method, but the bootloader will take longer to load the Kernel.

cp /netbsd /netbsd.plain
gzip -9 /netbsd

To see how much space we’ve saved:

$ 1ls -1 /netbsd.plain /netbsd.gz

214

Chapter 19 Tuning NetBSD

-rwxr-xr-x 1 root wheel 8757547 Apr 29 18:05 /netbsd.plain
-rwxr-xr-x 1 root wheel 3987769 Apr 29 18:05 /netbsd.gz

Note that you can only use gzip coding, by using gzip(1), bzip2 is not supported by the NetBSD
bootloaders!

215

Chapter 20
NetBSD Veriexec subsystem

Veriexec is NetBSD’s file integrity subsystem. It’s kernel based, hence can provide some protection even

in the case of a root compromise.

20.1 How it works

Veriexec works by loading a specification file, also called the signatures file, to the kernel. This file

contains information about files Veriexec should monitor, as well as their digital fingerprint (along with

the hashing algorithm used to produce this fingerprint), and various flags that will be discussed later.

At the moment, the following hashing algorithms are supported by Veriexec: MDS, SHA1, SHA256,

SHA384, SHAS12, and RMD160.

20.2 Signatures file

An entry in the Veriexec signatures file looks like this:

/path/to/file algorithm fingerprint flags

Where the first element, the path, must always be an absolute path. The algorithm is one of the

algorithms listed above, and fingerprint is the ASCII fingerprint.

20.3 Generating fingerprints

You can generate ASCII fingerprints for each algorithm using the following tools:

Table 20-1. Veriexec fingerprints tools

Algorithm Tool

MD5 /usr/bin/cksum -a md5
SHA1 /usr/bin/cksum -a shal
SHA256 /usr/bin/cksum -a sha256
SHA384 /usr/bin/cksum -a sha384
SHAS512 /usr/bin/cksum -a sha512
RMD160 /usr/bin/cksum -a rmdl60

For example, to generate a MDS5 fingerprint for /bin/1s:

216

Chapter 20 NetBSD Veriexec subsystem

% cksum -a md5 < /bin/ls
a8b525dad6e758778564308ed9b1e493

And to generate a SHAS512 fingerprint for /bin/ps:

% cksum -a sha512 < /bin/ps
381d4ad64£d47800897446a2026eca42151e03adeael58db5a34d12c¢529559113d928a9fef%9a7¢c4615d257688d

Each entry may be associated with zero or more flags. Currently, these flags indicate how the file the

entry is describing should be accessed. Note that this access type is enforced only in strict level 2 (IPS
mode) and above.

The access types you can use are “DIRECT”, “INDIRECT”, and “FILE”.

« DIRECT access means that the file is executed directly, and not invoked as an interpreter for some
script, or opened with an editor. Usually, most programs you use will be accessed using this mode:
1s /tmp

cp ~/foo /tmp/bar
rm ~/foo

oo oo de

« INDIRECT access means that the file is executed indirectly, and is invoked to interpret a script. This

happens usually when scripts have a #! magic as their first line. For example, if you have a script with
the following as its first line:

#!/bin/sh
And you run it as:
% ./script.sh
Then /bin/sh will be executed indirectly -- it will be invoked to interpret the script.

« FILE entries refer to everything which is not (or should not) be an executable. This includes shared
libraries, configuration files, etc.

Some examples for Veriexec signature file entries:

/bin/1ls MD5 dc2el4dc84bdefffdbf9777958c1lb20b DIRECT
/usr/bin/perl MD5 914aa8aad7ebd79ccd7909a09ed61£81 INDIRECT
/etc/pf.conf MD5 950eldd6fcb3f27dflbf6accf7029f7d FILE

Veriexec allows you to specify more than one way to access a file in an entry. For example, even though
/usr/bin/perl is mostly used as an interpreter, it may be desired to be able to execute it directly, too:

/usr/bin/perl MD5 914aaB8aad7ebd79ccd7909a09ed61£f81 DIRECT, INDIRECT

Shell scripts using #! magic to be “executable” also require two access types: We need them to be
“DIRECT” so we can execute them, and we need them to be “FILE” so that the kernel can feed their
contents to the interpreter they define:

/usr/src/build.sh MD5 e80dbb4c047eccld84053174cle9264a DIRECT, FILE

To make it easier to create signature files, and to make the signature files themselves more readable,
Veriexec allows you to use the following aliases:

217

Chapter 20 NetBSD Veriexec subsystem

Table 20-2. Veriexec access type aliases

Alias Expansion
PROGRAM DIRECT
INTERPRETER INDIRECT
SCRIPT DIRECT, FILE
LIBRARY FILE

After you have generated a signatures file, you should save it as /etc/signatures, and enable
Veriexec in rc.conf:

veriexec=YES

20.4 Strict levels

Since different people might want to use Veriexec for different purposes, we also define four strict levels,
ranging 0-3, and named “learning”, “IDS”, “IPS”, and “lockdown” modes.

In strict level 0, learning mode, Veriexec will act passively and simply warn about any anomalies.
Combined with verbose level 1, running the system in this mode can help you fine-tune the signatures
file. This is also the only strict level in which you can load new entries to the kernel.

Strict level 1, or IDS mode, will deny access to files with a fingerprint mismatch. This mode suits mostly
to users who simply want to prevent access to files which might’ve been maliciously modified by an
attacker.

Strict level 2, IPS mode, takes a step towards trying to protect the integrity of monitored files. In
addition to preventing access to files with a fingerprint mismatch, it will also deny write access and
prevent the removal of monitored files, and enforce the way monitored files are accessed. (as the
signatures file specifies).

Lockdown mode (strict level 3) can be used in highly critical situations such as custom made
special-purpose machines, or as a last line of defense after an attacker compromised the system and we
want to prevent traces from being removed, so we can perform post-mortem analysis. It will prevent the
creation of new files, and deny access to files not monitored by Veriexec.

It’s recommended to first run Veriexec in strict level O and verbose level 1 to fine-tune your signatures
file, ensuring that desired applications run correctly, and only then raise the strict level (and lower the
verbosity level). You can use /etc/sysctl.conf to auto raise the strict level to the desired level after a
reboot:

kern.veriexec.strict=1

20.5 Veriexec and layered file systems

Veriexec can be used on NFS file systems on the client side and on layered file systems such as the union
file system. The files residing on these file systems need only be specified in the /etc/signatures file
and that the file systems be mounted prior to the fingerprints being loaded.

218

Chapter 20 NetBSD Veriexec subsystem

If you are going to use layered file systems then you must ensure that you include the fingerprint for files
you want protected at every layer. If you fail to do this someone could overwrite a file protected by
Veriexec by using a different layer in a layered file system stack. This limitation may be removed in later
versions of NetBSD.

It’s recommended that if you are not going to use layered file systems nor NFS then these features should
be disabled in they kernel configuration. If you need to use layered file systems then you must follow the
instructions in the previous paragraph and ensure that the files you want protected have fingerprints at all
layers. Also you should raise securelevel to 2 after all mounts are done:

kern.securelevel=2

To prevent new layers being mounted which could compromise Veriexec’s protection.

20.6 Kernel configuration

To use Veriexec, aside from creating a signatures file, you should enable (uncomment) it in your kernel’s
config file: (e.g. /usr/src/sys/arch/i386/conf/GENERIC):

pseudo-device veriexec

Then, you need to enable the hashing algorithms you wish to support:

options VERIFIED_EXEC_FP_MD5
options VERIFIED_EXEC_FP_SHAl
options VERIFIED_EXEC_FP_RMD160
options VERIFIED_EXEC_FP_SHA512
options VERIFIED_EXEC_FP_SHA384
options VERIFIED_EXEC_FP_SHA256

Depending on your operating system version and platform, these may already be enable. Once done,
rebuild and reinstall your kernel, see Chapter 34 for further instructions.

If you do not have the Veriexec device /dev/veriexec, you can create it manually by running the
following command:

cd /dev
sh MAKEDEV veriexec

219

Chapter 21
Bluetooth on NetBSD

21.1 Introduction

Bluetooth is a digital radio protocol used for short range and low power communications. NetBSD
includes support for the Bluetooth protocol stack, and some integration of service profiles into the
NetBSD device framework.

The lower layers of the Bluetooth protocol stack pertaining to actual radio links between devices are
handled inside the Bluetooth Controller, which communicates with the Host computer using the “Host
Controller Interface” (HCI) protocol which can be accessed via a raw packet BTPROTO_HCI socket
interface.

Most of the Bluetooth protocols or services layer atop the “Link Layer Control and Adaptation Protocol”
(L2CAP), which can be accessed via a BTPROTO_L2CAP socket interface. This provides sequential
packet connections to remote devices, with up to 64k channels. When an L2ZCAP channel is opened, the
protocol or service that is required is identified by a “Protocol/Service Multiplexer” (PSM) value.

Service Discovery in the Bluetooth environment is provided for by the sdp(3) library functions and the
sdpd(8) daemon, which keeps a database of locally registered services and makes the information
available to remote devices performing queries. The sdpquery(1) tool can be used to query local and
remote service databases.

Security on Bluetooth links can be enabled by encryption and authentication options to btconfig(8)
which apply to all baseband links that a controller makes, or encryption and authentication can be
enabled for individual RFCOMM and L2CAP links as required. When authentication is requested, a PIN
is presented by each side (generally entered by the operator, some limited input devices have a fixed
PIN). The controller uses this PIN to generate a Link Key and reports this to the Host which may be
asked to produce it to authenticate subsequent connections. On NetBSD, the bthcid(8) daemon is
responsible for storing link keys and responding to Link Key Requests, and also provides an interface to
allow unprivileged users to specify a PIN with a PIN client, such as btpin(1).

21.2 Supported Hardware

Because Bluetooth controllers normally use the standard HCI protocol as specified in the “Bluetooth 2.0
Core” documentation to communicate with the host, the NetBSD Bluetooth stack is compatible with
most controllers, only requiring an interface driver:

« besp(4) provides a tty(4) line discipline to send and receive BlueCore Serial Protocol packets over a
serial line as described in the “BlueCore Serial Protocol (BCSP)” specification.

+ bt3c(4) provides an interface to the 3Com Bluetooth PC Card, model 3CRWB6096-A.

220

Chapter 21 Bluetooth on NetBSD

« btbc(4) provides support for the AnyCom BlueCard (LSE041, LSE039, LSE139) PCMCIA devices.

- btuart(4) provides a tty(4) line discipline to send and receive Bluetooth packets over a serial line as
described in the “Bluetooth Host Controller Interface [Transport Layer] specification, Vol 4 part A”.

+ sbt(4) provides support for Secure Digital IO Bluetooth adapters.

 ubt(4) interfaces to all USB Bluetooth controllers conforming to the “HCI USB Transport Layer”
specification.

If the hardware is supported by the NetBSD Bluetooth stack, autoconfiguration messages will show up in
the dmesg output, for example:

bt3cO0 at pcmcial0 function 0: <3COM, 3CRWB60-A, Bluetooth PC Card>

ubt0 at uhubl port 4 configuration 1 interface O
ubt0: Cambridge Silicon Radio Bluetooth USB Adapter, rev 2.00/19.58, addr 4

ubtl at uhubl port 2 configuration 1 interface O
ubtl: Broadcom Belkin Bluetooth Device, rev 1.10/0.01, addr 5

When support is not already compiled in, it can be added to the kernel configuration file for any platform
that supports USB and/or PCMCIA (see Section 19.9), using the following declarations, as required:

Bluetooth Controller and Device support

pseudo-device bcsp # BlueCore Serial Protocol
pseudo-device btuart # Bluetooth HCI UART

Bluetooth PCMCIA Controllers
bt3cx at pcmcia? function ? # 3Com 3CRWB6096-A
btbc* at pcmcia? function ? # AnyCom BlueCard LSE041/039/139

Bluetooth SDIO Controllers
sbt* at sdmmc?

Bluetooth USB Controllers
ubt* at uhub? port ?

Bluetooth Device Hub
bthub*x at bcsp?

bthubx at bt3c?

bthub* at btbc?

bthubx at btuart?
bthubx at sbt?

bthub*x at ubt?

Bluetooth HID support
bthidevx at bthub?

Bluetooth Mouse

btms* at bthidev? reportid ?
wsmousex at btms? mux 0

221

Chapter 21 Bluetooth on NetBSD

Bluetooth Keyboard
btkbdx at bthidev? reportid ?
wskbdx at btkbd? console ? mux 1

Bluetooth Audio support
btscox at bthub?

Some older USB Bluetooth dongles based on the Broadcom BCM2033 chip require firmware to be
loaded before they can function, and these devices will be attached to ugen(4). Use the “sysutils/bcmfw”
package from the NetBSD Package Collection, to load firmware and enable these.

21.3 System Configuration

To fully enable Bluetooth services on NetBSD, the following line should be added to the /etc/rc.conf
file.

bluetooth=YES

and either reboot, or execute the following command:

/etec/rc.d/bluetooth start

Configuration of Bluetooth controllers is done with the btconfig(8) program, and the above argument
enables only basic functionality, see the manual page for other useful options. The extra options for
btconfig on a given device, say utb0, can be set by adding a line for it to the /etc/rc.conf file.

btconfig_ubt0="name MyComputerName"

Important: bthcid(8) must be running in order to make authenticated connections with remote
devices, and authentication may be requested by either device.

21.4 Human Interface Devices

Support for “Human Interface Devices” (HIDs), which operate using the USB HID protocol over a pair
of L2CAP channels is provided by the bthidev(4) driver. Currently, keyboards and mice are catered for,
and attach to wscons(4) as normal.

21.4.1 Mice

Bluetooth Mice can be attached to the system with the btms(4) driver, using btdevctI(8).

First, you must discover the BDADDR of the device. This may be printed on the box, but the easiest way
is to place the device into discoverable mode and perform a device inquiry with the appropriate
controller:

222

Chapter 21 Bluetooth on NetBSD

% btconfig ubt0 inquiry
Device Discovery on ubtO 1 response
1: bdaddr 00:14:51:cl1:09:2d (unknown)

name "Mighty Mouse"
class: [0x002580] Peripheral Mouse <Limited Discoverable>
page scan rep mode 0x01
page scan period mode 0x02
page scan mode 0x00
clock offset 6944

For ease of use, you may want to add the address to the /etc/bluetooth/hosts file, so that you can
refer to the mouse by alias:

echo "00:14:51:cl:b9:2d mouse" >>/etc/bluetooth/hosts

Now, you can query the mouse, which will likely request authentication before it accepts connections.
The fixed PIN should be listed in the documentation, though “0000” is often used. Set the PIN first using
the btpin(1) program:

% btpin -d ubt0 -a mouse -p 0000

btdevectl -d ubt0 -a mouse -s HID

local bdaddr: 00:08:1b:8d:ba:6d

remote bdaddr: 00:14:51:cl:b9:2d

link mode: auth

device type: bthidev

control psm: 0x0011

interrupt psm: 0x0013

Collection page=Generic_Desktop usage=Mouse
Input id=2 size=1 count=1 page=Button usage=Button_1 Variable, logical range 0..1
Input id=2 size=1 count=1 page=Button usage=Button_2 Variable, logical range 0..1

0..1

Input id=2 size=1 count=1 page=Button usage=Button_4 Variable, logical range 0..1

Input id=2 size=1 count=1 page=Button usage=Button_3 Variable, logical range

Input id=2 size=4 count=1 page=0x0000 usage=0x0000 Const Variable, logical range 0..1
Collection page=Generic_Desktop usage=Pointer

Input id=2 size=8 count=1 page=Generic_Desktop usage=X Variable Relative, logical range -

Input id=2 size=8 count=1 page=Generic_Desktop usage=Y Variable Relative, logical range -

Input id=2 size=8 count=1 page=Consumer usage=AC_Pan Variable Relative, logical range -12

Input i1id=2 size=8 count=1 page=Generic_Desktop usage=Wheel Variable Relative, logical ran
End collection

Input id=2 size=8 count=1 page=0x00ff usage=0x00c0 Variable, logical range -127..127
Feature id=71 size=8 count=1 page=0x0006 usage=0x0020 Variable NoPref Volatile, logical ran
End collection

This tells you that the mouse has responded to an SDP query, and the device capabilities are shown. Note
that authentication is enabled by default for Bluetooth mice. You may now attach to the system:

btdevctl -d ubt0 —-a mouse -s HID -A

which should generate some messages on the system console:

223

Chapter 21 Bluetooth on NetBSD

bthidev0 at bthub0 remote-bdaddr 00:14:51:cl:b9:2d link-mode auth
btms0 at bthidevl reportid 2: 4 buttons, W and Z dirs.

wsmousel at btmsO0 mux 0

bthidevl: reportid 71 not configured

bthidevl: connected

and the mouse should work.

The device capabilities are cached by btdevctl(8), and to reattach the mouse at system startup, place an
entry in /etc/bluetooth/btdevctl.conf. The bthidev(4) driver will attempt to connect once,
though mice will usually be sleeping and may require a tap on the shoulder to awaken, in which case
they should initiate the connection to the host computer.

21.4.2 Keyboards
Bluetooth Keyboards can be attached to the system with the btkbd(4) driver, using btdevctl(8).

First, you must discover the BDADDR of the device. This may be printed on the box, but the easiest way
is to place the device into discoverable mode and perform a device inquiry with the appropriate
controller:

o

% btconfig ubt0 inquiry
Device Discovery on ubtO 1 response
1: bdaddr 00:0a:95:45:a4:a0 (unknown)
name "Apple Wireless Keyboard"
class: [0x002540] Peripheral Keyboard <Limited Discoverable>
page scan rep mode 0x01
page scan period mode 0x00
page scan mode 0x00
clock offset 18604

For ease of use, you may want to add the address to the /etc/bluetooth/hosts file, so that you can
refer to the keyboard by alias:

echo "00:0a:95:45:a4:a0 keyboard" >>/etc/bluetooth/hosts

Now, you can query the keyboard, which will likely request authentication before it accepts connections.
The PIN will need to be entered on the keyboard, and we can generate a random PIN, using the btpin(1)
program.

% btpin -d ubt0 -a keyboard -r -1 8

PIN: 18799632
btdevectl -d ubt0 -a keyboard -s HID

< ENTER PIN ON BLUETOOTH KEYBOARD NOW >
local bdaddr: 00:08:1b:8d:ba:6d

remote bdaddr: 00:0a:95:45:a4:a0
link mode: encrypt

224

Chapter 21 Bluetooth on NetBSD

device type: bthidev
control psm: 0x0011
interrupt psm: 0x0013
Collection page=Generic_Desktop usage=Keyboard
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_LeftControl Variable,

logical rang

Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_LeftShift Variable, logical range
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_LeftAlt Variable, logical range 0.
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_Left_GUI Variable, logical range 0

Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_RightControl Variable,

logical ran

Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_RightShift Variable, logical range

Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_RightAlt Variable, logical range 0
Input id=1 size=1 count=1 page=Keyboard usage=Keyboard_Right_GUI Variable, logical range

Input id=1 size=8 count=1 page=0x0000 usage=0x0000 Const, logical range 0..1

Output id=1 size=1 count=1 page=LEDs usage=Num_Lock Variable, logical range 0..1
Output id=1 size=1 count=1 page=LEDs usage=Caps_Lock Variable, logical range 0..1

Output id=1 size=1 count=1 page=LEDs usage=Scroll_Lock Variable, logical range 0..1

Output id=1 size=1 count=1 page=LEDs usage=Compose Variable, logical range 0..1

Output id=1 size=1 count=1 page=LEDs usage=Kana Variable, logical range 0..1

Output id=1 size=3 count=1 page=0x0000 usage=0x0000 Const, logical range 0..1
Input id=1 size=8 count=6 page=Keyboard usage=No_Event, logical range 0..255

Input id=1 size=1 count=1 page=Consumer usage=Eject Variable Relative, logical range 0..1
Input id=1 size=1 count=1 page=Consumer usage=Mute Variable Relative, logical range 0..1

Input id=1 size=1 count=1 page=Consumer usage=Volume_Up Variable, logical range 0..1

Input id=1 size=1 count=1 page=Consumer usage=Volume_Down Variable, logical range 0..1

Input id=1 size=1 count=4 page=0x0000 usage=0x0000 Const, logical range 0..1
End collection

This tells you that the keyboard has responded to an SDP query, and the device capabilities are shown.
Note that encryption is enabled by default, since encrypted connection support is mandatory for
Bluetooth keyboards. You may now attach to the system:

btdevetl -d ubtO0 -a keyboard -s HID -A

which should generate some messages on the system console:

bthidevl at bthub0 remote-bdaddr 00:0a:95:45:a4:a0 link-mode encrypt
btkbd0 at bthidev0 reportid 1

wskbdl at btkbd0 mux 1

wskbdl: connecting to wsdisplayO

bthidevl: connected

and the keyboard should work.

The device capabilities are cached by btdevctl(8), and to reattach the keyboard at system startup, place an
entry in /etc/bluetooth/btdevctl.cont. The bthidev(4) driver will attempt to connect once when
attached, but if the keyboard is not available at that time, you may find that pressing a key will cause it to
wake up and initiate a connection to the last paired host.

225

Chapter 21 Bluetooth on NetBSD

21.5 Personal Area Networking

Personal Area Networking services over Bluetooth are provided by the btpand(8) daemon which can
assume all roles from the PAN profile and connects remote devices to the system through a tap(4) virtual
Ethernet interface.

21.5.1 Personal Area Networking User

The "Personal Area Networking User" role is the client that accesses Network services on another
device. For instance, in order to connect to the Internet via a smart phone with the NAP profile, make
sure that the phone is discoverable, then:

% btconfig ubtO0 inquiry
Device Discovery from device: ubtO 1 response
1: bdaddr 00:17:83:30:bd:5e (unknown)
name "HTC Touch"
class: [0x5a020c] Smart Phone <Networking> <Capturing> <Object Transfer>
<Telephony>

page scan rep mode 0x01
clock offset 9769
rssi —-42

echo "00:17:83:30:bd:5e phone" >>/etc/bluetooth/hosts

You will see that the phone should have the <Networking> flag set in the Class of Device. Checking for
the NAP service:

% sdpquery —a phone search NAP
ServiceRecordHandle: 0x00010000
ServiceClassIDList:

Network Access Point
ProtocolDescriptorList:

L2CAP (PSM 0x000f)

BNEP (v1.0; IPv4, ARP, IPv6)
LanguageBaseAttributeIDList:

en.UTF-8 base 0x0100
BluetoothProfileDescriptorList:

Network Access Point, v1.0
ServiceName: "Network Access Point"
ServiceDescription: "Bluetooth NAP Service"
SecurityDescription: None
NetAccessType: 100Mb Ethernet
MaxNetAccessRate: 100000

reveals that the NAP service is available and that it provides IPv4, ARP and IPv6 protocols.

Most likely, the phone will request authentication before it allows connections to the NAP service, so
before you make the first connection you may need to provide a PIN, which can be randomly generated.
Then start btpand(8):

% btpin -d ubt0 -a phone -r -1 6

226

Chapter 21 Bluetooth on NetBSD

PIN: 862048
btpand -d ubt0 —-a phone -s NAP

< ENTER PIN ON PHONE NOW >

Searching for NAP service at 00:17:83:30:bd:5e

Found PSM 15 for service NAP

Opening connection to service 0x1116 at 00:17:83:30:bd:5e
Using interface tap0 with addr 00:10:60:e1:50:3d

Finally, you will need to configure the tap(4) interface, but the phone should have a DHCP server so
dhcped(8) will do that for you.

dhcped tapO

Now you can surf the World Wide Web, but watch your data usage unless you have a comprehensive data
plan.

21.6 Serial Connections

Serial connections over Bluetooth are provided for by the RFCOMM protocol, which provides up to 30
channels multiplexed over a single L2ZCAP channel. This streamed data protocol can be accessed using
the BTPROTO_RFCOMM socket interface, or via the rfcomm_sppd(1) program.

For instance, you can make a serial connection to the “Dial Up Networking” (DUN) service of a mobile
phone in order to connect to the Internet with PPP. First you should discover the BDADDR of the phone,
and add this to your /etc/bluetooth/hosts for ease of use. Place the phone into Discoverable mode,
and perform an inquiry from the appropriate controller:

o

% btconfig ubtO0 inquiry
Device Discovery from device: ubtO 1 response
1: bdaddr 00:16:bc:00:e8:48 (unknown)
name "Nokia 6103"
class: [0x520204] Cellular Phone <Networking> <Object Transfer> <Telephony>
page scan rep mode 0x01
page scan period mode 0x02
page scan mode 0x00
clock offset 30269

echo "00:16:bc:00:e8:48 phone" >>/etc/bluetooth/hosts

Now, you can query the phone to confirm that it supports the DUN profile:

% sdpquery —-d ubt0 -a phone search DUN
ServiceRecordHandle: 0x00010003
ServiceClassIDList:

Dialup Networking

Generic Networking

227

Chapter 21 Bluetooth on NetBSD

ProtocolDescriptorList:

L2CAP
RFCOMM (channel 1)
BrowseGroupList:

Public Browse Root
LanguageBaseAttributeIDList:

en.UTF-8 base 0x0100
BluetoothProfileDescriptorList:

Dialup Networking, v1.0
ServiceName: "Dial-up networking"

Most likely, the phone will request authentication before it allows connections to the DUN service, so
before you make the first connection you may need to provide a PIN, which can be randomly generated.
You can use rfcomm_sppd in stdio mode to check that the connection is working ok, press ~C to
disconnect and return to the shell, for example:

% btpin -d ubt0 -a phone -r -1 6
PIN: 904046
% rfcomm sppd -d ubt0 —-a phone -s DUN

< ENTER PIN ON PHONE NOW >

rfcomm_sppd[24635]: Starting on stdio...
at

OK

ati

Nokia

OK
ati3
Nokia 6103

OK

atav

ACTIVE PROFILE:

E1 Q0 V1 X5 &Cl &D2 &S0 &YO

+CMEE=0 +CSTA=129 +CBST=0,0,1 +CRLP=61,61,48,6 +CR=0 +CRC=0 +CLIP=0,2
+CLIR=0,2 +CSNS=0 +CVHU=1 +DS=0,0,2048,32 +DR=0 +ILRR=0
+CHSN=0,0,0,0 +CHSR=0 +CPBS="SM"

S00:000 S01:000 sS02:043 S03:013 S04:010 S05:008 S07:060 S08:002
S10:100 S12:050 sS25:000

OK

A
(o]
rfcomm_sppd[24635]: Completed on stdio

To have pppd(8) connect to the DUN service of your phone automatically when making outbound

connections, add the following line to the /et c/ppp/options file in place of the normal tty declaration:

pty "rfcomm_sppd -d ubt0 -a phone -s DUN -m encrypt"

228

Chapter 21 Bluetooth on NetBSD

21.7 Audio

Isochronous (SCO) Audio connections may be created on a baseband radio link using either the
BTPROTO_SCO socket interface, or the btsco(4) audio device driver. While the specification says that
up to three such links can be made between devices, the current Bluetooth stack can only handle one
with any dignity.

Important: When using SCO Audio with USB Bluetooth controllers, you will need to enable
isochronous data, and calculate the MTU that the device will use, see ubt(4) and btconfig(8).

Note: SCO Audio does not work properly with the bt3c(4) driver, use a USB controller for best results.

21.7.1 SCO Audio Headsets

Audio connections to Bluetooth Headsets are possible using the btsco(4) audio driver, and the bthset(1)
program. First, you need to discover the BDADDR of the headset, and will probably wish to make an
alias in your /etc/bluetooth/hosts file for ease of use. Place the headset into discoverable mode
and perform an inquiry with the appropriate controller:

o

% btconfig ubt0 inquiry
Device Discovery from device: ubtO 1 response
1: bdaddr 00:07:a24:23:10:83 (unknown)

name "JABRA 250"

class: [0x200404] Wearable Headset <Audio>

page scan rep mode 0x01

page scan period mode 0x00

page scan mode 0x00

clock offset 147

echo "00:07:a4:23:10:83 headset" >>/etc/bluetooth/hosts

You will need to pair with the headset the first time you connect, the fixed PIN should be listed in the
manual (often, “0000” is used). btdevctl(8) will query the device and attach the btsco(4) audio driver.

% btpin -d ubt0 -a headset -p 0000

btdevctl -d ubt0 -a headset -s HSET -A
local bdaddr: 00:08:1b:8d:ba:6d
remote bdaddr: 00:07:a4:23:10:83
link mode: none

device type: btsco

mode: connect

channel: 1

which should generate some messages on the system console:

btscol0 at bthub0 remote-bdaddr 00:07:a4:23:10:83 channel 1

229

Chapter 21 Bluetooth on NetBSD

audiol at btsco0: full duplex

In order to use the audio device, you will need to open a control connection with bthset(1) which conveys
volume information to the mixer device.

% bthset -m /dev/mixerl -v

Headset Info:
mixer: /dev/mixerl
laddr: 00:08:1b:8d:ba:6d
raddr: 00:07:a24:23:10:83
channel: 1
vgs.dev: 0, vgm.dev: 1

and you should now be able to transfer 8khz samples to and from /dev/audiol using any program that
supports audio, such as audioplay(1) or audiorecord(1). Adjusting the mixer values should work when
playing though you may find that when opening a connection, the headset will reset the volume to the
last known settings.

o

% audiorecord -d /dev/audiol voice.au
< TALK NONSENSE NOW >

A
(o
% audioplay -d /dev/audio voice.au

< THATS REALLY WHAT YOU SOUND LIKE >

o

% audioplay -d /dev/audiol voice.au

< IN THE HEADSET >

The device capabilities are cached by btdevctl(8), and to reattach the btsco(4) driver at system startup,
add an entry to /etc/bluetooth/btdevctl.conf.

21.7.2 SCO Audio Handsfree

Audio connections to Bluetooth mobile phones using the Handsfree profile are possible with the
“comms/bthfp” program from the NetBSD Package Collection.

First, you need to discover the BDADDR of the phone, and will probably wish to make an alias in your
/etc/bluetooth/hosts file for ease of use. Place the phone into discoverable mode and perform an
inquiry with the appropriate controller:

% btconfig ubt0 inquiry
Device Discovery from device: ubt0O 1 response
1: bdaddr 00:16:bc:00:e8:48 (unknown)
: name "Nokia 6103"

class: [0x520204] Cellular Phone <Networking;gt; <Object Transfer;gt; <Telephony;gt;

page scan rep mode 0x01

230

Chapter 21 Bluetooth on NetBSD

page scan period mode 0x02
page scan mode 0x00
clock offset 10131

echo "00:16:bc:00:e8:48 phone" >>/etc/bluetooth/hosts

Now, you should be able to query the phone to confirm that it supports the Handsfree profile:

% sdpquery -d ubt0 -a phone search HF
ServiceRecordHandle: 0x00010006
ServiceClassIDList:
Handsfree Audio Gateway
Generic Audio
ProtocolDescriptorList:

L2CAP
RFCOMM (channel 13)
BrowseGroupList:

Public Browse Root
LanguageBaseAttributeIDList:

en.UTF-8 base 0x0100
BluetoothProfileDescriptorList:

Handsfree, v1.5
ServiceName: "Voice Gateway"
Network: Ability to reject a call
SupportedFeatures:

3 Way Calling

Echo Cancellation/Noise Reduction

Voice Recognition

In-band Ring Tone

and you will be able to use the bthfp program to access the Handsfree profile. The first time you connect,
you may need to use a PIN to pair with the phone, which can be generated randomly by btpin(1):

o

btpin -d ubt0 -a phone -r -1 6
PIN: 349163
% bthfp -d ubt0 -a phone -v

< ENTER PIN ON PHONE NOW >
Handsfree channel: 13
Press ? for commands
Connecting.. ok
< AT+BRSF=20
> +BRSF: 47
Features: [0x002f] <3 way calling> <EC/NR> <Voice Recognition> <In-band ringtone> <reject a
OK
AT+CIND="?
+CIND: ("call", (0,1)), ("service", (0,1)), ("call_setup", (0-3)), ("callsetup", (0-3))
OK
AT+CIND?
+CIND: 0,1,0,0
OK

vV V. ANV V AV

231

Chapter 21 Bluetooth on NetBSD

< AT+CMER=3,0,0,1

> OK

< AT+CLIP=1

> OK

Service Level established

When the phone rings, just press a to answer, and audio should be routed through the /dev/audio
device. Note that you will need a microphone connected in order to speak to the remote party.

21.8 Object Exchange

NetBSD does not currently have any native OBEX capability, see the “comms/obexapp” or
“comms/obexftp” packages from the NetBSD Package Collection.

21.9 Troubleshooting

When nothing seems to be happening, it may be useful to try the hcidump program from the
“sysutils/netbt-hcidump” package in the NetBSD Package Collection. This has the capability to dump
packets entering and leaving Bluetooth controllers on NetBSD, which is greatly helpful in pinpointing
problems.

232

Chapter 22
Miscellaneous operations

This chapter collects various topics, in sparse order

22.1 Installing the boot manager

Sysinst, the NetBSD installation program usually installs the NetBSD boot manager on the hard disk.
The boot manager can also be installed or reconfigured at a later time, if needed, with the fdisk
command. For example:

f£disk -B wdO

If NetBSD doesn’t boot from the hard disk, you can boot it from the installation floppy and start the
kernel on the hard disk. Insert the installation disk and, at the boot prompt, give the following command:

> boot wdOa:netbsd

This boots the kernel on the hard disk (use the correct device, for example sdOa for a SCSI disk).

Note: Sometimes fdisk -B doesn’t give the expected result (at least it happened to me), probably if
you install/remove other operating systems. In this case, try running fdisk -i and then run again fdisk
from NetBSD.

22.2 Deleting the disklabel

Though this is not an operation that you need to perform frequently, it can be useful to know how to do it
in case of need. Please be sure to know exactly what you are doing before performing this kind of
operation. For example:

dd if=/dev/zero of=/dev/rwdOc bs=8k count=1

The previous command deletes the disklabel (not the MBR partition table). To completely delete the
disk, the whole device rwd0d must be used. For example:

dd if=/dev/zero of=/dev/rwd0d bs=8k

The commands above will only work as expected on the 1386 and amd64 ports of NetBSD. On other
ports, the whole device will end in ¢, not d (e.g. rwd0c).

233

Chapter 22 Miscellaneous operations

22.3 Speaker

To output a sound from the speaker (for example at the end of a long script) the spkr driver can be used
in the kernel config, which is mapped on /dev/speaker. For example:

echo 'BPBPBPBPBP’ > /dev/speaker

Note: The spkr device is not enabled in the generic kernel; a customized kernel is needed.

22.4 Forgot root password?

If you forget root’s password, not all is lost and you can still recover the system with the following steps:
boot single user, mount / and change root’s password. In detail:

1. Boot single user: when the boot prompt appears and the five seconds countdown starts, give the
following command:

> boot -s

2. At the following prompt
Enter pathname of shell or RETURN for sh:
press Enter.

3. Write the following commands:

fsck -y /
mount -u /

fsck -y /usr

HH o H H

mount /usr
4. Change root’s password:

passwd root

Changing local password for root.
New password: (not echoed)

Retype new password: (not echoed)
#

5. Exit the shell to go to multiuser mode.

exit

If you get the error “Password file is busy”, please see the section below.

22.5 Password file is busy?

If you try to modify a password and you get the mysterious message ‘“Password file is busy”, it probably
means that the file /etc/ptmp has not been deleted from the system. This file is a temporary copy of the
/etc/master.passwd file; check that you are not losing important information and then delete it:

rm /etc/ptmp

234

Chapter 22 Miscellaneous operations

Note: If the file /etc/ptmp exists you can also receive a warning message at system startup. For
example:

root: password file may be incorrect - /etc/ptmp exists

22.6 Adding a new hard disk

This section describes how to add a new hard disk to an already working NetBSD system. In the
following example a new SCSI controller and a new hard disk, connected to the controller, will be added.
If you don’t need to add a new controller, skip the relevant part and go to the hard disk configuration. The
installation of an IDE hard disk is identical; only the device name will be different (wd# instead of sd#).

As always, before buying new hardware, consult the hardware compatibility list of NetBSD and make
sure that the new device is supported by the system.

When the SCSI controller has been physically installed in the system and the new hard disk has been
connected, it’s time to restart the computer and check that the device is correctly detected, using the
dmesg command. This is the sample output for an NCR-875 controller:

ncr0 at pciO dev 15 function 0: ncr 53c875 fast20 wide scsi

ncr0: interrupting at irqg 10

ncr0: minsync=12, maxsync=137, maxoffs=16, 128 dwords burst, large dma fifo
ncr0: single-ended, open drain IRQ driver, using on-chip SRAM

ncr0: restart (scsi reset).

scsibus0 at ncr0O: 16 targets, 8 luns per target

sd0(ncr0:2:0): 20.0 MB/s (50 ns, offset 15)

sd0: 2063MB, 8188 cyl, 3 head, 172 sec, 512 bytes/sect x 4226725 sectors

If the device doesn’t appear in the output, check that it is supported by the kernel that you are using; if
necessary, compile a customized kernel (see Chapter 34).

Now the partitions can be created using the fdisk command. First, check the current status of the disk:

fdisk sdO
NetBSD disklabel disk geometry:
cylinders: 8188 heads: 3 sectors/track: 172 (516 sectors/cylinder)

BIOS disk geometry:
cylinders: 524 heads: 128 sectors/track: 63 (8064 sectors/cylinder)

Partition table:
0: sysid 6 (Primary ’big’ DOS, 16-bit FAT (> 32MB))
start 63, size 4225473 (2063 MB), flag 0x0

beg: cylinder 0, head 1, sector 1
end: cylinder 523, head 127, sector 63

1: <UNUSED>

2: <UNUSED>

3: <UNUSED>

In this example the hard disk already contains a DOS partition, which will be deleted and replaced with a
native NetBSD partition. The command fdisk -u sd0 allows to modify interactively the partitions. The

235

Chapter 22 Miscellaneous operations

modified data will be written on the disk only before exiting and fdisk will request a confirmation before

writing, so you can work relaxedly.

Disk geometries

The geometry of the disk reported by fdisk can appear confusing. Dmesg reports 4226725
sectors with 8188/3/172 for C/H/S, but 8188*3*172 gives 4225008 and not 4226725. What
happens is that most modern disks don’t have a fixed geometry and the number of sectors
per track changes depending on the cylinder: the only interesting parameter is the number of
sectors. The disk reports the C/H/S values but it’s a fictitious geometry: the value 172 is the
result of the total number of sectors (4226725) divided by 8188 and then by 3.

To make things more confusing, the BIOS uses yet another “fake” geometry (C/H/S
524/128/63) which gives a total of 4225536, a value which is a better approximation to the
real one than 425008. To partition the disk we will use the BIOS geometry, to maintain
compatibility with other operating systems, although we will lose some sectors (4226725 -
4225536 = 1189 sectors = 594 KB).

To create the BIOS partitions the command fdisk -u must be used; the result is the following:

Partition table:
0: sysid 169 (NetBSD)
start 63, size 4225473 (2063 MB), flag 0x0
beg: cylinder 0, head 1, sector 1
end: cylinder 523, head 127, sector 63
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>

Now it’s time to create the disklabel for the NetBSD partition. The correct steps to do this are:
disklabel sd0 > tempfile

vi tempfile
disklabel -R -r sdO0 tempfile

If you try to create the disklabel directly with
disklabel -e sdO
you get the following message

disklabel: ioctl DIOCWDINFO: No disk label on disk;
use "disklabel -I" to install initial label

because the disklabel does not yet exist on the disk.

Now we create some disklabel partitions, editing the tempfile as already explained. The result is:

size offset fstype [fsize bsize cpyg]
a: 2048004 63 4.2BSD 1024 8192 16 # (Cyl. Ox— 3969%)

236

Chapter 22 Miscellaneous operations

4226662 63 unused 0 0 # (Cyl. O%-= 8191x)
4226725 0 unused 0 0 # (Cyl. 0 — 8191+%)
2178658 2048067 4,.2BSD 1024 8192 16 # (Cyl. 3969%— 8191+%)

Note: When the disklabel has been created it is possible to optimize it studying the output of the
command newfs -N /dev/rsd0a, which warns about the existence of unallocated sectors at the end
of a disklabel partition. The values reported by newfs can be used to adjust the sizes of the partitions
with an iterative process.

The final operation is the creation of the file systems for the newly defined partitions (a and e).

newfs /dev/rsdOla
newfs /dev/rsdOe

The disk is now ready for usage, and the two partitions can be mounted. For example:

mount /dev/sdO0a /mnt

If this succeeds, you may want to put an entry for the partition into /etc/fstab.

22.7 How to rebuild the devices in /dev

First shutdown to single user, partitions still mounted “rw” (read-write); You can do that by just typing
shutdown now while you are in multi user mode, or reboot with the —s option and make / and /dev
read-writable by doing.

mount -u /

mount -u /dev

Then:

H H = FH FH H H

mkdir /newdev

cd
cp
sh
cd
mv
mv

rm

/newdev
/dev/MAKEDEV* .
./MAKEDEV all
/

dev olddev
newdev dev

—-r olddev

Or if you fetched all the sources in /usr/src:

H H = FH FH H H = I

mkdir /newdev

cd
cp

/newdev
/usr/src/etc/MAKEDEV. local .

(ed /usr/src/etc ; make MAKEDEV)

cp
sh
cd
mv

rm

/usr/src/etc/obj*/MAKEDEV .
./MAKEDEV all

/

dev olddev; mv newdev dev
-r olddev

237

Chapter 22 Miscellaneous operations
You can determine $arch by
uname -m
or

sysctl hw.machine_arch

238

IV. Networking and related issues

Chapter 23

Introduction to TCP/IP
Networking

23.1 Audience

This section explains various aspects of networking. It is intended to help people with little knowledge
about networks to get started. It is divided into three big parts. We start by giving a general overview of
how networking works and introduce the basic concepts. Then we go into details for setting up various
types of networking in the second parts, and the third part of the networking section covers a number of
“advanced” topics that go beyond the basic operation as introduced in the first two sections.

The reader is assumed to know about basic system administration tasks: how to become root, edit files,
change permissions, stop processes, etc. See the other chapters of this NetBSD guide and, e.g.,
AeleenFrisch for further information on this topic. Besides that, you should know how to handle the
utilities we’re going to set up here, i.e., you should know how to use telnet, FTP, ... I will not explain the
basic features of those utilities, please refer to the appropriate manual pages, the references listed or, of
course, the other parts of this document instead.

This introduction to TCP/IP networking was written with the intention in mind to give starters a basic
knowledge. If you really want to know what it’s all about, read CraigHunt. This book does not only cover
the basics, but goes on and explains all the concepts, services and how to set them up in detail. It’s great,
Ilove it! :-)

23.2 Supported Networking Protocols

There are several protocol suites supported by NetBSD, most of which were inherited from NetBSD’s
predecessor, 4.4BSD, and subsequently enhanced and improved. The first and most important one today
is DARPA’s Transmission Control Protocol/Internet Protocol (TCP/IP). Other protocol suites available in
NetBSD include the Stream Control Transmission Protocol (SCTP), and Apple’s AppleTalk protocol
suite. They are only used in some special applications.

Today, TCP/IP is the most widespread protocol of the ones mentioned above. It is implemented on
almost every hardware and operating system, and it is also the most-used protocol in heterogenous
environments. So, if you just want to connect your computer running NetBSD to some other machine at
home or you want to integrate it into your company’s or university’s network, TCP/IP is the right choice.

240

Chapter 23 Introduction to TCP/IP Networking

23.3 Supported Media

The TCP/IP protocol stack behaves the same regardless of the underlying media used, and NetBSD
supports a wide range of these, among them are Ethernet (10/100Mb/1/10/40/100Gb), USB, serial line
and FireWire (IEEE 1394).

23.3.1 Ethernet

Ethernet is the medium commonly used to build local area networks (LANS) of interconnected machines
within a limited area such as an office, company or university campus. Ethernet is based on a bus
structure to which many machines can connect to, and communication always happens between two
nodes at a time. When two or more nodes want to talk at the same time, both will restart communication
after some timeout. The technical term for this is CSMA/CD (Carrier Sense w/ Multiple Access and
Collision Detection).

Initially, Ethernet hardware consisted of a thick (yellow) cable that machines tapped into using special
connectors that poked through the cable’s outer shielding. The successor of this was called 10base5,
which used BNC-type connectors for tapping in special T-connectors and terminators on both ends of the
bus. Today, ethernet is mostly used with twisted pair lines which are used in a collapsed bus system that
are contained in switches or hubs. The twisted pair lines give this type of media its name - 10baseT for
10 Mbit/s networks, and 100baseT for 100 MBit/s ones. In switched environments there’s also the
distinction if communication between the node and the switch can happen in half- or in full duplex mode.

23.3.2 IEEE 802.11 (Wi-Fi)

IEEE 802.11 (commonly known as Wi-Fi) is the primary means by which mobile devices are connected
over a Local Area Network.

IEEE 802.11 primarily operates over two radio bands, 2.4 GHz (modes b, g, and n), and 5 GHz (modes a,
and ac). The 2.4 GHz band is typically more congested, but loses less performance through walls and
other barriers.

The main protocol used for securing Wi-Fi connections is WPA (Wi-Fi Protected Access). In a typical
configuration, this encrypts the connection between the access point and its clients with a password.

23.3.3 Serial Line

The disadvantage of a serial connection is that it’s slower than other methods. NetBSD can use at most
115200 bit/s, making it a lot slower than e.g. Ethernet’s minimum 10 Mbit/s.

There are two possible protocols to connect a host running NetBSD to another host using a serial line
(possibly over a phone-line):

« Serial Line IP (SLIP)
« Point to Point Protocol (PPP)

The choice here depends on whether you use a dial-up connection through a modem or if you use a static
connection (null-modem or leased line). If you dial up for your IP connection, it’s wise to use PPP as it
offers some possibilities to auto-negotiate IP-addresses and routes, which can be quite painful to do by

241

Chapter 23 Introduction to TCP/IP Networking

hand. If you want to connect to another machine which is directly connected, use SLIP, as this is
supported by about every operating system and more easy to set up with fixed addresses and routes.

PPP on a direct connection is a bit difficult to setup, as it’s easy to timeout the initial handshake; with
SLIP, there’s no such initial handshake, i.e. you start up one side, and when the other site has its first
packet, it will send it over the line.

RFC1331 and RFC1332 describe PPP and TCP/IP over PPP. SLIP is defined in RFC1055.

23.4 TCP/IP Address Format

TCP/IP uses 4-byte (32-bit) addresses in the current implementations (IPv4), also called IP-numbers
(Internet-Protocol numbers), to address hosts.

TCP/IP allows any two machines to communicate directly. To permit this all hosts on a given network
must have a unique IP address. To assure this, IP addresses are administrated by one central organisation,
the InterNIC. They give certain ranges of addresses (network-addresses) directly to sites which want to
participate in the internet or to internet-providers, which give the addresses to their customers.

If your university or company is connected to the Internet, it has (at least) one such network-address for
its own use, usually not assigned by the InterNIC directly, but rather through an Internet Service Provider
(ISP).

If you just want to run your private network at home, see below on how to “build” your own IP
addresses. However, if you want to connect your machine to the (real :-) Internet, you should get an IP
addresses from your local network-administrator or -provider.

IP addresses are usually written in “dotted quad”-notation - the four bytes are written down in decimal
(most significant byte first), separated by dots. For example, 132.199.15.99 would be a valid address.
Another way to write down [P-addresses would be as one 32-bit hex-word, e.g. 0x84c70f63. This is not
as convenient as the dotted-quad, but quite useful at times, too. (See below!)

Being assigned a network means nothing else but setting some of the above-mentioned 32 address-bits to
certain values. These bits that are used for identifying the network are called network-bits. The
remaining bits can be used to address hosts on that network, therefore they are called host-bits. Figure
23-1 illustrates the separation.

Figure 23-1. IPv4-addresses are divided into more significant network- and less significant hostbits

n netbits 32-n hostbits

In the above example, the network-address is 132.199.0.0 (host-bits are set to 0 in network-addresses)
and the host’s address is 15.99 on that network.

How do you know that the host’s address is 16 bit wide? Well, this is assigned by the provider from
which you get your network-addresses. In the classless inter-domain routing (CIDR) used today, host
fields are usually between as little as 2 to 16 bits wide, and the number of network-bits is written after the
network address, separated by a “/”, e.g. 132.199.0.0/16 tells that the network in question has 16
network-bits. When talking about the “size” of a network, it’s usual to only talk about it as “/16”, “/24”,
etc.

242

Chapter 23 Introduction to TCP/IP Networking

Before CIDR was used, there used to be four classes of networks. Each one starts with a certain
bit-pattern identifying it. Here are the four classes:

+ Class A starts with “0” as most significant bit. The next seven bits of a class A address identify the
network, the remaining 24 bit can be used to address hosts. So, within one class A network there can
be 2** hosts. It’s not very likely that you (or your university, or company, or whatever) will get a whole
class A address.

The CIDR notation for a class A network with its eight network bits is an “/8”.

+ Class B starts with “10” as most significant bits. The next 14 bits are used for the networks address
and the remaining 16 bits can be used to address more than 65000 hosts. Class B addresses are very
rarely given out today, they used to be common for companies and universities before IPv4 address
space went scarce.

The CIDR notation for a class B network with its 16 network bits is an “/16”.

Returning to our above example, you can see that 132.199.15.99 (or 0x84c70f63, which is more
appropriate here!) is on a class B network, as 0x84... = 1000... (base 2).

Therefore, the address 132.199.15.99 can be split into an network-address of 132.199.0.0 and a
host-address of 15.99.

+ Class C is identified by the MSBs being “110”, allowing only 256 (actually: only 254, see below) hosts
on each of the 2*' possible class C networks. Class C addresses are usually found at (small) companies.

The CIDR notation for a class C network with its 24 network bits is an “/24”.

+ There are also other addresses, starting with “111”. Those are used for special purposes (e. g.
multicast-addresses) and are not of interest here.

Please note that the bits which are used for identifying the network-class are part of the network-address.

When separating host-addresses from network-addresses, the “netmask” comes in handy. In this mask,
all the network-bits are set to ““1”, the host-bits are “0”. Thus, putting together IP-address and netmask
with a logical AND-function, the network-address remains.

To continue our example, 255.255.0.0 is a possible netmask for 132.199.15.99. When applying this
mask, the network-address 132.199.0.0 remains.

For addresses in CIDR notation, the number of network-bits given also says how many of the most
significant bits of the address must be set to “1” to get the netmask for the corresponding network. For
classful addressing, every network-class has a fixed default netmask assigned:

« Class A (/8): default-netmask: 255.0.0.0, first byte of address: 1-127
+ Class B (/16): default-netmask: 255.255.0.0, first byte of address: 128-191
« Class C (/24): default-netmask: 255.255.255.0, first byte of address: 192-223

Another thing to mention here is the “broadcast-address”. When sending to this address, all hosts on the
corresponding network will receive the message sent. The broadcast address is characterized by having
all host-bits set to “1”.

Taking 132.199.15.99 with its netmask 255.255.0.0 again, the broadcast-address would result in
132.199.255.255.

243

Chapter 23 Introduction to TCP/IP Networking

You’ll ask now: But what if I want a host’s address to be all bits “0” or “1”? Well, this doesn’t work, as
network- and broadcast-address must be present! Because of this, a class B (/16) network can contain at
most 2'%-2 hosts, a class C (/24) network can hold no more than 23-2 = 254 hosts.

Besides all those categories of addresses, there’s the special IP-address 127.0.0.1 which always refers to
the “local” host, i.e. if you talk to 127.0.0.1 you’ll talk to yourself without starting any network-activity.
This is sometimes useful to use services installed on your own machine or to play around if you don’t
have other hosts to put on your network.

Let’s put together the things we’ve introduced in this section:

IP-address

32 bit-address, with network- and host-bits.

Network-address

IP-address with all host bits set to “0”.

Netmask

32-bit mask with “1” for network- and “0” for host-bits.

Broadcast

IP-address with all host bits set “1”.

localhost’s address

The local host’s IP address is always 127.0.0.1.

23.5 Subnetting and Routing

After talking so much about netmasks, network-, host- and other addresses, I have to admit that this is
not the whole truth.

Imagine the situation at your university, which usually has a class B (/16) address, allowing it to have up
to 2'® ~= 65534 hosts on that net. Maybe it would be a nice thing to have all those hosts on one single
network, but it’s simply not possible due to limitations in the transport media commonly used today.

For example, when using thinwire ethernet, the maximum length of the cable is 185 meters. Even with
repeaters in between, which refresh the signals, this is not enough to cover all the locations where
machines are located. Besides that, there is a maximum number of 1024 hosts on one ethernet wire, and
you’ll lose quite a bit of performance if you go to this limit.

So, are you hosed now? Having an address which allows more than 60000 hosts, but being bound to
media which allows far less than that limit?

Well, of course not! :-)

The idea is to divide the “big” class B net into several smaller networks, commonly called sub-networks
or simply subnets. Those subnets are only allowed to have, say, 254 hosts on them (i.e. you divide one
big class B network into several class C networks!).

244

Chapter 23 Introduction to TCP/IP Networking

To do this, you adjust your netmask to have more network- and less host-bits on it. This is usually done
on a byte-boundary, but you’re not forced to do it there. So, commonly your netmask will not be
255.255.0.0 as supposed by a class B network, but it will be set to 255.255.255.0.

In CIDR notation, you now write a “/24” instead of the “/16” to show that 24 bits of the address are used
for identifying the network and subnet, instead of the 16 that were used before.

This gives you one additional network-byte to assign to each (physical!) network. All the 254 hosts on
that subnet can now talk directly to each other, and you can build 256 such class C nets. This should fit
your needs.

To explain this better, let’s continue our above example. Say our host 132.199.15.99 (I’1l call him dusk
from now; we’ll talk about assigning hostnames later) has a netmask of 255.255.255.0 and thus is on the
subnet 132.199.15.0/24. Let’s furthermore introduce some more hosts so we have something to play
around with, see Figure 23-2.

Figure 23-2. Our demo-network

cisco
132.199.1.8

ftp
132.199.1.202

Subnet 132.199.1.0
Broadcast 132.199.1.255
Netmask 255.255.255.0 5

132.199.1.33

rzi
132.199.15.1

Subnet 132.199.15.0
Broadcast 132.199.15.255
a Netmask 255.255.255.0

132.199.15.100 132.199.15.99
dawn dusk

132.199.15.98

SLIP

132.199.15.97
noon

In the above network, dusk can talk directly to dawn, as they are both on the same subnet. (There are
other hosts attached to the 132.199.15.0/24-subnet but they are not of importance for us now)

But what if dusk wants to talk to a host on another subnet?

Well, the traffic will then go through one or more gateways (routers), which are attached to two subnets.
Because of this, a router always has two different addresses, one for each of the subnets it is on. The
router is functionally transparent, i.e. you don’t have to address it to reach hosts on the “other” side.
Instead, you address that host directly and the packets will be routed to it correctly.

Example. Let’s say dusk wants to get some files from the local ftp-server. As dusk can’t reach ftp directly
(because it’s on a different subnet), all its packets will be forwarded to its "defaultrouter” rzi
(132.199.15.1), which knows where to forward the packets.

Dusk knows the address of its defaultrouter in its network (rzi, 132.199.15.1), and it will forward any
packets to it which are not on the same subnet, i.e. it will forward all IP-packets in which the third

245

Chapter 23 Introduction to TCP/IP Networking

address-byte isn’t 15.

The (default)router then gives the packets to the appropriate host, as it’s also on the FTP-server’s
network.

In this example, all packets are forwarded to the 132.199.1.0/24-network, simply because it’s the
network’s backbone, the most important part of the network, which carries all the traffic that passes
between several subnets. Almost all other networks besides 132.199.15.0/24 are attached to the
backbone in a similar manner.

But what if we had hooked up another subnet to 132.199.15.0/24 instead of 132.199.1.0/24? Maybe
something the situation displayed in Figure 23-3.

Figure 23-3. Attaching one subnet to another one

Subnet 132.199.1.0
(Backbone)

132.199.1.33
rzi

132.199.15.1

Subnet 132.199.15.0
132.199.15.2 132.199.15.99
route2 dusk
132.199.16.1

When we now want to reach a host which is located in the 132.199.16.0/24-subnet from dusk, it won’t
work routing it to rzi, but you’ll have to send it directly to route2 (132.199.15.2). Dusk will have to know
to forward those packets to route2 and send all the others to rzi.

Subnet 132.199.16.0-

When configuring dusk, you tell it to forward all packets for the 132.199.16.0/24-subnet to route2, and
all others to rzi. Instead of specifying this default as 132.199.1.0/24, 132.199.2.0/24, etc., 0.0.0.0 can be
used to set the default-route.

Returning to Figure 23-2, there’s a similar problem when dawn wants to send to noon, which is
connected to dusk via a serial line running. When looking at the IP-addresses, noon seems to be attached
to the 132.199.15.0-network, but it isn’t really. Instead, dusk is used as gateway, and dawn will have to
send its packets to dusk, which will forward them to noon then. The way dusk is forced into accepting
packets that aren’t destined at it but for a different host (noon) instead is called “proxy arp”.

The same goes when hosts from other subnets want to send to noon. They have to send their packets to
dusk (possibly routed via rzi),

23.6 Name Service Concepts

In the previous sections, when we talked about hosts, we referred to them by their [P-addresses. This was
necessary to introduce the different kinds of addresses. When talking about hosts in general, it’s more
convenient to give them “names”, as we did when talking about routing.

246

Chapter 23 Introduction to TCP/IP Networking

Most applications don’t care whether you give them an IP address or a hostname. However, they’ll use IP
addresses internally, and there are several methods for them to map hostnames to IP addresses, each one
with its own way of configuration. In this section we’ll introduce the idea behind each method, in the
next chapter, we’ll talk about the configuration-part.

The mapping from hostnames (and domainnames) to [P-addresses is done by a piece of software called
the “resolver”. This is not an extra service, but some library routines which are linked to every
application using networking-calls. The resolver will then try to resolve (hence the name ;-) the
hostnames you give into IP addresses. See RFC1034 and RFC1035 for details on the resolver.

@ 9

Hostnames are usually up to 256 characters long, and contain letters, numbers and dashes (“-”); case is
ignored.

Just as with networks and subnets, it’s possible (and desirable) to group hosts into domains and
subdomains. When getting your network-address, you usually also obtain a domainname by your
provider. As with subnets, it’s up to you to introduce subdomains. Other as with IP-addresses,
(sub)domains are not directly related to (sub)nets; for example, one domain can contain hosts from
several subnets.

Figure 23-2 shows this: Both subnets 132.199.1.0/24 and 132.199.15.0/24 (and others) are part of the
subdomain “rz.uni-regensburg.de”. The domain the University of Regensburg got from its IP-provider is
“uni-regensburg.de” (“.de” is for Deutschland, Germany), the subdomain “rz” is for Rechenzentrum,
computing center.

1731

Hostnames, subdomain- and domainnames are separated by dots (“.”). It’s also possible to use more than
one stage of subdomains, although this is not very common. An example would be
fox_in.socs.uts.edu.au.

A hostname which includes the (sub)domain is also called a fully qualified domain name (FQDN). For
example, the IP-address 132.199.15.99 belongs to the host with the FQDN dusk.rz.uni-regensburg.de.

Further above I told you that the IP-address 127.0.0.1 always belongs to the local host, regardless what’s
the “real” IP-address of the host. Therefore, 127.0.0.1 is always mapped to the name “localhost”.

The three different ways to translate hostnames into IP addresses are: /etc/hosts, the Domain Name
Service (DNS) and the Network Information Service (NIS).

23.6.1 /etc/hosts

The first and simplest way to translate hostnames into [P-addresses is by using a table telling which IP
address belongs to which hostname(s). This table is stored in the file /etc/hosts and has the following
format:

IP-address hostname [nickname [...]]
Lines starting with a hash mark (“#”’) are treated as comments. The other lines contain one IP-address
and the corresponding hostname(s).

It’s not possible for a hostname to belong to several IP addresses, even if I made you think so when
talking about routing. rzi for example has really two distinct names for each of its two addresses: rzi and
rzia (but please don’t ask me which name belongs to which address!).

Giving a host several nicknames can be convenient if you want to specify your favorite host providing a
special service with that name, as is commonly done with FTP-servers. The first (leftmost) name is

247

Chapter 23 Introduction to TCP/IP Networking

usually the real (canonical) name of the host.

Besides giving nicknames, it’s also convenient to give a host’s full name (including domain) as its
canonical name, and using only its hostname (without domain) as a nickname.

Important: There must be an entry mapping localhost to 127.0.0.1 in /etc/hosts!

23.6.2 Domain Name Service (DNS)

/etc/hosts bears an inherent problem, especially in big networks: when one host is added or one
host’s address changes, all the /etc/hosts files on all machines have to be changed! This is not only
time-consuming, it’s also very likely that there will be some errors and inconsistencies, leading to
problems.

Another approach is to hold only one hostnames-table (-database) for a network, and make all the clients
query that “nameserver”. Updates will be made only on the nameserver.

This is the basic idea behind the Domain Name Service (DNS).

Usually, there’s one nameserver for each domain (hence DNS), and every host (client) in that domain
knows which domain it is in and which nameserver to query for its domain.

When the DNS gets a query about a host which is not in its domain, it will forward the query to a DNS

which is either the DNS of the domain in question or knows which DNS to ask for the specified domain.
If the DNS forwarded the query doesn’t know how to handle it, it will forward that query again to a DNS
one step higher. This is not ad infinitum, there are several “root”-servers, which know about any domain.

See Chapter 26 for details on DNS.

23.6.3 Network Information Service (NIS/YP)

Yellow Pages (YP) was invented by Sun Microsystems. The name has been changed into Network
Information Service (NIS) because YP was already a trademark of the British telecom. So, when I'm
talking about NIS you’ll know what I mean. ;-)

There are quite some configuration files on a Unix-system, and often it’s desired to maintain only one set
of those files for a couple of hosts. Those hosts are grouped together in a NIS-domain (which has nothing
to do with the domains built by using DNS!) and are usually contained in one workstation cluster.

Examples for the config-files shared among those hosts are /etc/passwd, /etc/group and - last but
not least - /etc/hosts.

So, you can “abuse” NIS for getting a unique name-to-address-translation on all hosts throughout one
(NIS-)domain.

There’s only one drawback, which prevents NIS from actually being used for that translation: In contrast
to the DNS, NIS provides no way to resolve hostnames which are not in the hosts-table. There’s no hosts
“one level up” which the NIS-server can query, and so the translation will fail! Suns NIS+ takes measures
against that problem, but as NIS+ is only available on Solaris-systems, this is of little use for us now.

Don’t get me wrong: NIS is a fine thing for managing e.g. user-information (/etc/passwd, ...) in
workstation-clusters, it’s simply not too useful for resolving hostnames.

248

Chapter 23 Introduction to TCP/IP Networking

23.6.4 Other

The name resolving methods described above are what’s used commonly today to resolve hostnames into
IP addresses, but they aren’t the only ones. Basically, every database mechanism would do, but none is
implemented in NetBSD. Let’s have a quick look what you may encounter.

With NIS lacking hierarchy in data structures, NIS+ is intended to help out in that field. Tables can be
setup in a way so that if a query cannot be answered by a domain’s server, there can be another domain
“above” that might be able to do so. E.g. you could choose to have a domain that lists all the hosts (users,
groups, ...) that are valid in the whole company, one that defines the same for each division, etc. NIS+ is
not used a lot today, even Sun went back to ship back NIS by default.

Last century, the X.500 standard was designed to accommodate both simple databases like /etc/hosts
as well as complex, hierarchical systems as can be found e.g. in DNS today. X.500 wasn’t really a
success, mostly due to the fact that it tried to do too much at the same time. A cut-down version is
available today as the Lightweight Directory Access Protocol (LDAP), which is becoming popular in the
last years to manage data like users but also hosts and others in small to medium sized organisations.

23.7 IPv6

23.7.1 What good is IPv6?

When telling people to migrate from IPv4 to IPv6, the question you usually hear is “why?”. There are
actually a few good reasons to move to the new version:

« Bigger address space
« Support for mobile devices

+ Built-in security

23.7.1.1 Bigger Address Space

The bigger address space that IPv6 offers is the most obvious enhancement it has over IPv4. While
today’s internet architecture is based on 32-bit wide addresses, the new version has 128 bit available for
addressing. Thanks to the enlarged address space, work-arounds like NAT don’t have to be used any
more. This allows full, unconstrained IP connectivity for today’s mobile phones and IoT devices.

23.7.1.2 Mobility

‘When mentioning mobile devices and IP, another important point to note is that some special protocol is
needed to support mobility, and implementing this protocol - called “Mobile IP” - is one of the
requirements for every IPv6 stack. Thus, if you have IPv6 going, you have support for roaming between
different networks, with everyone being updated when you leave one network and enter the other one.
Support for roaming is possible with IPv4 too, but there are a number of hoops that need to be jumped in
order to get things working. With IPv6, there’s no need for this, as support for mobility was one of the
design requirements for [Pv6. See RFC3024 for some more information on the issues that need to be
addressed with Mobile IP on IPv4.

249

Chapter 23 Introduction to TCP/IP Networking

23.7.1.3 Security

Besides support for mobility, security was another requirement for the successor to today’s Internet
Protocol version. As a result, IPv6 protocol stacks are required to include IPsec. IPsec allows
authentication, encryption and compression of any IP traffic. Unlike application level protocols like SSL
or SSH, all IP traffic between two nodes can be handled, without adjusting any applications. The benefit
of this is that all applications on a machine can benefit from encryption and authentication, and that
policies can be set on a per-host (or even per-network) base, not per application/service. An introduction
to IPsec with a roadmap to the documentation can be found in RFC2411, the core protocol is described
in RFC2401.

23.7.2 Changes to IPv4

After giving a brief overview of all the important features of IPv6, we’ll go into the details of the basics
of IPv6 here. A brief understanding of how IPv4 works is assumed, and the changes in IPv6 will be
highlighted. Starting with IPv6 addresses and how they’re split up we’ll go into the various types of
addresses there are, what became of broadcasts, then after discussing the IP layer go into changes for
name resolving and what’s new in DNS for IPv6.

23.7.2.1 Addressing

An IPv4 address is a 32 bit value, that’s usually written in “dotted quad” representation, where each
“quad” represents a byte value between 0 and 255, for example:

127.0.0.1

This allows a theoretical number of 2*? or ~4 billion hosts to be connected on the internet today. Due to
grouping, not all addresses are available today.

IPv6 addresses use 128 bit, which results in 2'*® theoretically addressable hosts. This allows for a Really
Big number of machines to addressed, and it sure fits all of today’s requirements plus all those nifty
PDAs and cell phones with IP phones in the near future without any sweat. When writing IPv6
addresses, they are usually divided into groups of 16 bits written as four hex digits, and the groups are
separated by colons. An example is:

fe80::2a0:d2ff:fea5:e9f5

€, .0

This shows a special thing - a number of consecutive zeros can be abbreviated by a single “::” once in the
IPv6 address. The above address is thus equivalent to fe80:0:00:000:2a0:d2ff:fea5:e91f5 - leading zeros

6,0

within groups can be omitted, and only one “::” can be used in an IPv6 address.

To make addresses manageable, they are split in two parts, which are the bits identifying the network a
machine is on, and the bits that identify a machine on a (sub)network. The bits are known as netbits and
hostbits, and in both IPv4 and IPv6, the netbits are the “left”, most significant bits of an IP address, and
the host bits are the “right”, least significant bits, as shown in Figure 23-4.

250

Chapter 23 Introduction to TCP/IP Networking

Figure 23-4. IPv6-addresses are divided into more significant network- and less significant hostbits,
too

n netbits 128-n hostbits

In IPv4, the border is drawn with the aid of the netmask, which can be used to mask all net/host bits.
Typical examples are 255.255.0.0 that uses 16 bit for addressing the network, and 16 bit for the machine,
or 255.255.255.0 which takes another 8 bit to allow addressing 256 subnets on e.g. a class B net.

When addressing switched from classful addressing to CIDR routing, the borders between net and host
bits stopped being on 8 bit boundaries, and as a result the netmasks started looking ugly and not really
manageable. As a replacement, the number of network bits is used for a given address, to denote the
border, e.g.

10.0.0.0/24
is the same as a netmask of 255.255.255.0 (24 1-bits). The same scheme is used in IPv6:
2001:638:a01:2::/64

tells us that the address used here has the first (leftmost) 64 bits used as the network address, and the last
(rightmost) 64 bits are used to identify the machine on the network. The network bits are commonly
referred to as (network) “prefix”, and the “prefixlen” here would be 64 bits.

Common addressing schemes found in IPv4 are the (old) class B and class C nets. With a class C
network (/24), you get 24 bits assigned by your provider, and it leaves 8 bits to be assigned by you. If
you want to add any subnetting to that, you end up with “uneven” netmasks that are a bit nifty to deal
with. Easier for such cases are class B networks (/16), which only have 16 bits assigned by the provider,
and that allow subnetting, i.e. splitting of the rightmost bits into two parts. One to address the on-site
subnet, and one to address the hosts on that subnet. Usually, this is done on byte (8 bit) boundaries.
Using a netmask of 255.255.255.0 (or a /24 prefix) allows flexible management even of bigger networks
here. Of course there is the upper limit of 254 machines per subnet, and 256 subnets.

With 128 bits available for addressing in IPv6, the scheme commonly used is the same, only the fields
are wider. Providers usually assign /48 networks, which leaves 16 bits for a subnetting and 64 hostbits.

Figure 23-5. IPv6-addresses have a similar structure to class B addresses

[Pv4: | 16‘:bit ‘8bit‘8bit|

IPv6: | | :48:bit - ‘16:bit \ | | 64:1bit‘

Provider—assigned network—bits

Self—assigned subnet—bits

D Host-bits

Now while the space for network and subnets here is pretty much ok, using 64 bits for addressing hosts
seems like a waste. It’s unlikely that you will want to have several billion hosts on a single subnet, so

251

Chapter 23 Introduction to TCP/IP Networking

what is the idea behind this?

The idea behind fixed width 64 bit wide host identifiers is that they aren’t assigned manually as it’s
usually done for IPv4 nowadays. Instead, IPv6 host addresses are recommended (not mandatory!) to be
built from so-called EUI64 addresses. EUI64 addresses are - as the name says - 64 bit wide, and derived
from MAC addresses of the underlying network interface. E.g. for ethernet, the 6 byte (48 bit) MAC
address is usually filled with the hex bits “fffe” in the middle and a bit is set to mark the address as
unique (which is true for Ethernet), e.g. the MAC address

01:23:45:67:89:ab

results in the EUI64 address

03:23:45:1f:fe:67:89:ab

which again gives the host bits for the IPv6 address as
::0323:45ff:fe67:89ab

These host bits can now be used to automatically assign IPv6 addresses to hosts, which supports
autoconfiguration of IPv6 hosts - all that’s needed to get a complete IPv6 address is the first (net/subnet)
bits, and IPv6 also offers a solution to assign them automatically.

When on a network of machines speaking IP, there’s usually one router which acts as the gateway to
outside networks. In IPv6 land, this router will send “router advertisement” information, which clients
are expected to either receive during operation or to solicit upon system startup. The router advertisement
information includes data on the router’s address, and which address prefix it routes. With this
information and the host-generated EUI64 address, an IPv6-host can calculate its IP address, and there is
no need for manual address assignment. Of course routers still need some configuration.

The router advertisement information they create are part of the Neighbor Discovery Protocol (NDP, see
RFC2461), which is the successor to IPv4’s ARP protocol. In contrast to ARP, NDP does not only do
lookup of IPv6 addresses for MAC addresses (the neighbor solicitation/advertisement part), but also does
a similar service for routers and the prefixes they serve, which is used for autoconfiguration of IPv6 hosts
as described in the previous paragraph.

23.7.2.2 Multiple Addresses

In IPv4, a host usually has one IP address per network interface or even per machine if the IP stack
supports it. Only very rare applications like web servers result in machines having more than one IP
address. In IPv6, this is different. For each interface, there is not only a globally unique IP address, but
there are two other addresses that are of interest: The link local address, and the site local address. The
link local address has a prefix of fe80::/64, and the host bits are built from the interface’s EUI64 address.
The link local address is used for contacting hosts and routers on the same network only, the addresses
are not visible or reachable from different subnets. If wanted, there’s the choice of either using global
addresses (as assigned by a provider), or using site local addresses. Site local addresses are assigned the
network address fec0::/10, and subnets and hosts can be addressed just as for provider-assigned
networks. The only difference is, that the addresses will not be visible to outside machines, as these are
on a different network, and their “site local” addresses are in a different physical net (if assigned at all).
As with the 10/8 network in IPv4, site local addresses can be used, but don’t have to. For IPv6 it’s most

252

Chapter 23 Introduction to TCP/IP Networking

common to have hosts assigned a link-local and a global IP address. Site local addresses are rather
uncommon today, and are no substitute for globally unique addresses if global connectivity is required.

23.7.2.3 Multicasting

In IP land, there are three ways to talk to a host: unicast, broadcast and multicast. The most common one
is by talking to it directly, using its unicast address. In IPv4, the unicast address is the “normal” IP
address assigned to a single host, with all address bits assigned. The broadcast address used to address all
hosts in the same IP subnet has the network bits set to the network address, and all host bits set to “1”
(which can be easily done using the netmask and some bit operations). Multicast addresses are used to
reach a number of hosts in the same multicast group, which can be machines spread over the whole
internet. Machines must join multicast groups explicitly to participate, and there are special IPv4
addresses used for multicast addresses, allocated from the 224/8 subnet. Multicast isn’t used very much
in IPv4, and only few applications like the MBone audio and video broadcast utilities use it.

In IPv6, unicast addresses are used the same as in IPv4, no surprise there - all the network and host bits
are assigned to identify the target network and machine. Broadcasts are no longer available in IPv6 in the
way they were in IPv4, this is where multicasting comes into play. Addresses in the ff::/8 network are
reserved for multicast applications, and there are two special multicast addresses that supersede the
broadcast addresses from IPv4. One is the “all routers” multicast address, the others is for “all hosts™.
The addresses are specific to the subnet, i.e. a router connected to two different subnets can address all
hosts/routers on any of the subnets it’s connected to. Addresses here are:

« ffOx::1 for all hosts and
o ff0x::2 for all routers,

where “x” is the scope ID of the link here, identifying the network. Usually this starts from “1” for the
“node local” scope, “2” for the first link, etc. Note that it’s perfectly ok for two network interfaces to be
attached to one link, thus resulting in double bandwidth:

Figure 23-6. Several interfaces attached to a link result in only one scope ID for the link

node

~<— 200MBps

One use of the “all hosts” multicast is in the neighbor solicitation code of NDP, where any machine that
wants to communicate with another machine sends out a request to the “all hosts” group, and the
machine in question is expected to respond.

23.7.2.4 Name Resolving in IPv6

After talking a lot about addressing in IPv6, anyone still here will hope that there’s a proper way to
abstract all these long & ugly IPv6 addresses with some nice hostnames as one can do in IPv4, and of
course there is.

253

Chapter 23 Introduction to TCP/IP Networking

Hostname to IP address resolving in IPv4 is usually done in one of three ways: using a simple table in
/etc/hosts, by using the Network Information Service (NIS, formerly YP) or via the Domain Name
System (DNS).

As of this writing, NIS/NIS+ over IPv6 is currently only available on Solaris 8, for both database
contents and transport, using a RPC extension.

Having a simple address<->name map like /etc/hosts is supported in all IPv6 stacks. With the KAME
implementation used in NetBSD, /etc/hosts contains IPv6 addresses as well as IPv4 addresses. A
simple example is the “localhost” entry in the default NetBSD installation:

127.0.0.1 localhost
e localhost

For DNS, there are no fundamentally new concepts. IPv6 name resolving is done with AAAA records
that - as the name implies - point to an entity that’s four times the size of an A record. The AAAA record
takes a hostname on the left side, just as A does, and on the right side there’s an IPv6 address, e.g.

noon IN AAAA 3ffe:400:430:2:240:95ff:£e40:4385

For reverse resolving, IPv4 uses the in-addr.arpa zone, and below that it writes the bytes (in decimal) in
reversed order, i.e. more significant bytes are more right. For IPv6 this is similar, only that hex digits
representing 4 bits are used instead of decimal numbers, and the resource records are also under a
different domain, ip6.int.

So to have the reverse resolving for the above host, you would put into your /etc/named.conf
something like:

zone "0.3.4.0.0.0.4.0.e.f.£.3.IP6.INT" {
type master;
file "db.reverse";

bi

and in the zone file db.reverse you put (besides the usual records like SOA and NS):

5.8.3.4.0.4.e.£.£.£.5.9.0.4.2.0.2.0.0.0 IN PTR noon.ipvé6.example.com.

The address is reversed here, and written down one hex digit after the other, starting with the least
significant (rightmost) one, separating the hex digits with dots, as usual in zone files.

One thing to note when setting up DNS for IPv6 is to take care of the DNS software version in use.
BIND 8.x does understand AAAA records, but it does not offer name resolving via IPv6. You need
BIND 9.x for that. Beyond that, BIND 9.x supports a number of resource records that are currently being
discussed but not officially introduced yet. The most noticeable one here is the A6 record which allows
easier provider/prefix changing.

To sum up, this section talked about the technical differences between IPv4 and IPv6 for addressing and
name resolving. Some details like IP header options, QoS and flows were deliberately left out to not
make this document more complex than necessary.

254

Chapter 24
Setting up TCP/IP on NetBSD in
practice

24.1 Overview of the network configuration files

The following is a list of the files used to configure the network. The usage of these files, some of which
have already been met the first chapters, will be described in the following sections.

/etc/hosts
Local hosts database file. Each line contains information regarding a known host and contains the
internet address, the host’s name and the aliases. Small networks can be configured using only the
hosts file, without a name server. See hosts(5)

/etc/resolv.conf
This file specifies how the routines which provide access to the Internet Domain Name System
should operate. Generally it contains the addresses of the DNS servers. See resolv.conf(5)

/etc/sysctl.conf
This file is used for configuring kernel settings, e.g. enabling packet forwarding on a gateway. See
sysctl.conf(5).

/etc/ifconfig.xxx

This file is used for the automatic configuration of the network interfaces at boot, see ifconfig.if(5)

/etc/npf.conf
Contains firewall configuration for the NetBSD Packet Filter, see npf.conf(5) and
/usr/share/examples/npf.

/etc/dhcpcd.conf
Contains configuration for a DHCP client. DHCP is used to automatically get IPv4 address
assi