
A M achine-Independent DMA Framework for NetBSD

Jason R. Thorpe1

Numerical Aerospace Simulation Facility
NASA Ames Research Center

Abstract
One of the challenges in implementing a portable

kernel is finding good abstractions for semantically-
similar operations which often have very machine-
dependent implementations. This is especially impor-
tant on modern machines which share common archi-
tectural features, e.g. the PCI bus.

This paper describes why a machine-independent
DMA mapping abstraction is needed, the design consid-
erations for such an abstraction, and the implementation
of this abstraction in the NetBSD/alpha and
NetBSD/i386 kernels.

1. Intr oduction

NetBSD is a portable, modern UNIX-like operat-
ing system which currently runs on eighteen platforms
covering nine processor architectures.Some of these

platforms, including the Alpha and i3862, share the PCI
bus as a common architectural feature.In order to
share device drivers for PCI devices between different
platforms, abstractions that hide the details of bus
access must be invented. Thedetails that must be hid-
den can be broken down into two classes: CPU access
to devices on the bus (bus_space) and device access to
host memory (bus_dma). Herewe will discuss the lat-
ter; bus_space is a complicated topic in and of itself,
and is beyond the scope of this paper.

Within the scope of DMA, there are two broad
classes of details that must be hidden from the core
device driver. The first class, host details, deals with
issues such as the physical mapping of system memory
(and the DMA mechanisms employed as a result of
such mapping) and cache semantics. The second class,
bus details, deals with issues related to features or limi-
tations specific to the bus to which a device is attached,
such as DMA bursting and address line limitations.

1Jason R. Thorpe is an employee of MRJ Technology Solu-
tions, Inc. This work is funded by NASA contract NAS2-14303.

2The term "i386" is used here to refer to all of the 386-class
and higher processors, including the i486, Pentium, Pentium Pro, and
Pentium II.

1.1. Hostplatform details

In the example platforms listed above, there are at
least three different mechanisms used to perform DMA.
The first is used by the i386 platform. This mechanism
can be described as "what you see is what you get": the
address that the device uses to perform the DMA trans-
fer is the same address that the host CPU uses to access
the memory location in question.

Figure 1 - WYSIWYG DMA

DMA address Host address

The second mechanism, employed by the Alpha,
is very similar to the first; the address the host CPU
uses to access the memory location in question is offset
from some base address at which host memory is
direct-mapped on the device bus for the purpose of
DMA.



Figure 2 - direct-mapped DMA

DMA address Host address

The third mechanism, scatter-gather-mapped
DMA, employs an MMU which performs translation of
DMA addresses to host memory physical addresses.
This mechanism is also used by the Alpha, because
Alpha platforms implement a physical address space
sometimes significantly larger than the 32-bit address
space supported by most currently-available PCI
devices.

Figure 3 - scatter-gather-mapped DMA

DMA address Host address

MMU

The second and third DMA mechanisms above
are combined on the Alpha through the use ofDMA
windows. The ASIC which implements the PCI bus on
a particular platform has at least two of these DMA
windows. Eachwindow may be configured for direct-
mapped or scatter-gather-mapped DMA. Windows are
chosen based on the type of DMA transfer being per-
formed, the bus type, and the physical address range of
the host memory being accessed.

These concepts apply to platforms other than
those listed above and busses other than PCI.Similar

issues exist with the TurboChannel bus used on DEC-
stations and early Alpha systems, and with the Q-bus
used on some DEC MIPS and VAX-based servers.

The semantics of the host system’s cache are also
important to devices which wish to perform DMA.
Some systems are capable of cache-coherent DMA.On
such systems, the cache is often write-through (i.e.
stores are written both to the cache and to host mem-
ory), or the cache has special snooping logic that can
detect access to a memory location for which there is a
dirty cache line (which causes the cache to be flushed
automatically). Othersystems are not capable of cache-
coherent DMA. On these systems, software must
explicitly flush any data caches before memory-to-
device DMA transfers, as well as invalidate soon-to-be-
stale cache lines before device-to-memory DMA.

1.2. Busdetails

In addition to hiding the platform-specific DMA
details for a single bus, it is desirable to share as much
device driver code as possible for a device which may
attach to multiple busses. Agood example is the Bus-
Logic family of SCSI adapters. This family of devices
comes in ISA, EISA, VESA local bus, and PCI flavors.
While there are some bus-specific details, such as prob-
ing and interrupt initialization, the vast majority of the
code that drives this family of devices is identical for
each flavor.

The BusLogic family of SCSI adapters are exam-
ples of what are termedbus masters. That is to say, the
device itself performs all bus handshaking and host
memory access during a DMA transfer. No third party
is involved in the transfer. Such devices, when per-
forming a DMA transfer, present the DMA address on
the bus address lines, execute the bus’s fetch or store
operation, increment the address, and so forth until the
transfer is complete. Because the device is using the
bus address lines, the range of host physical addresses
the device can access is limited by the number of such
lines. Onthe PCI bus, which has at least 32 address
lines, the device may be able to access the entire physi-
cal address space of a 32-bit architecture, such as the
i386. ISA, however, only has 24 address lines.This
means that the device can directly access only 16MB of
physical address space.

A common solution to the limited-address-lines
problem is a technique known asDMA bouncing. This
technique involves a second memory area, located in
the physical address range accessible by the device,
known as a bounce buffer. In a memory-to-device
transfer, the data is copied by the CPU to the bounce
buffer, and the DMA operation is started.Conversely,



in a device-to-memory transfer, the DMA operation is
started, and the CPU then copies the data from the
bounce buffer once the DMA operation has completed.

While simple to implement, DMA bouncing is
not the most elegant way to solve the limited-address-
line problem. On the Alpha, for example, scatter-
gather-mapped DMA may be used to translate the out-
of-range memory physical addresses to in-range DMA
addresses that the device may use.This solution tends
to offer better performance due to eliminated data
copies, and is less expensive in terms of memory usage.

Returning to the BusLogic SCSI example, it is
undesirable to place intimate knowledge of direct-map-
ping, scatter-gather-mapping, and DMA bouncing in
the core device driver. Clearly, an abstraction that hides
these details and presents a consistent interface, regard-
less of the DMA mechanism being used, is needed.

2. Designconsiderations

Hiding host and bus details is actually very
straightforward. Handling WYSIWYG and direct-
mapped DMA mechanisms is trivial. Handlingscatter-
gather-mapped DMA is also very easy, with the help of
state kept in machine-dependent code layers. The pres-
ence and semantics of caches are also easy to handle
with a set of four "synchronization" operations, and
once caches are handled, DMA bouncing is conceptu-
ally trivial if viewed as a non-DMA-coherent cache.
Unfortunately, while these operations are quite easy to
do individually, traditional kernels do not provide a suf-
ficiently abstract interface to the operations.This
means that device drivers in these traditional kernels
must handle each case explicitly.

In addition to the interface to these operations, a
comprehensive DMA framework must also consider
data buffer structures and DMA-safe memory handling.

2.1. Databuffer structures

The BSD kernel has essentially three different
structures used to represent data buffers. Thefirst is a
simple linear buffer in virtual space, for example the
data areas used to implement the file system buffer
cache, and miscellaneous buffers allocated by the gen-
eral purpose kernel memory allocator. The second is
the mbuf chain. Mbufs are typically used by code
which implements inter-process communication and
networking. Their structure, small buffers chained
together, reduces memory fragmentation and allows
packet headers to be prepended easily. The third is the
uio structure. Thisstructure describes software scatter-
gather to the kernel address space or to the address

space of a specific process. It is most commonly used
by the read(2) and write(2) system calls. While it
would be possible for the device driver to treat the two
more complex buffer structures as sets of multiple sim-
ple linear buffers, this is undesirable in terms of source
code maintenance; the code to handle these data buffer
structures can be complex, especially in terms of error
handling.

In addition to the obvious need to DMA to and
from memory mapped into kernel address space, it is
common in modern operating systems to implement an
optimized I/O interface for user processes which pro-
vides a method for devices to DMA directly to or from
memory regions mapped into a process’s address space.
While this facility is partially provided for character
device I/O by double-mapping the user buffer into ker-
nel address space, the interface is not sufficiently gen-
eral, and consumes kernel resources. This is somewhat
related to theuio structure, in that theuio is capable of
addressing buffers in a process’s address space.How-
ev er it may be desirable to use an alternate data format,
such as a linear buffer, in some applications. In order to
implement this, the DMA mapping framework must
have access to processes’ virtual memory structures.

It may also be desirable to DMA to or from
buffers not mapped into any address space. The obvi-
ous example is frame grabbers.These devices, which
capture video images, often require large, physically
contiguous memory regions to store the captured image
data. On some architectures, mapping of virtual
address space is expensive. An application may wish to
give a large buffer to the device, allow the device to
continuously update the buffer, and then only map small
regions of the buffer at any giv en time. Sincethe entire
buffer need not be mapped into virtual address space,
the DMA framework should provide an interface for
using raw, unmapped buffers in DMA transfers.

2.2. DMA-safememory handling

A comprehensive DMA framework must also
provide several memory handling facilities. Themost
obvious of these is a method of allocating (and freeing)
DMA-safe memory. The term "DMA-safe" is a way of
describing a set of attributes the memory will have.
First, DMA-safe memory must be addressable within
the constraints of the bus. It must also be allocated in
such a way as to not exceed the number of physical seg-



ments3 specified by the caller.

In order for the kernel to access the DMA-safe
memory, a method must exist to map this memory into
kernel virtual address space. This is a fairly straightfor-
ward operation, with one exception. Onsome plat-
forms which do not have cache-coherent DMA, cache
flushes are very expensive. Howev er, it is sometimes
possible to mark virtual mappings of memory as cache-
inhibited, or access physical memory though a cache-
inhibited direct-mapped address segment. Inorder to
accommodate these situations, a hint may be provided
to the memory mapping function which specifies that
the user of this memory wishes to avoid expensive data
cache flushes.

To facilitate optimized I/O to process address
spaces, it is necessary to provide processes a way of
mapping a DMA-safe memory area. The most con-
venient way to do this is via a device driver’s mmap()
entry point. Thus, a DMA mapping framework must
have a way to communicate with the VM system’s

device pager4.

All of these requirements must be considered in
the design of a complete DMA framework. Whenpos-
sible, the framework may merge semantically similar
operations or concepts, but it must address all of these
issues. Thenext section describes the interface pro-
vided by such a framework.

3. Thebus_dma interface

What follows is a description ofbus_dma, the
DMA portion of the machine-independent bus access

interface in NetBSD, commonly referred to asbus.h5.
The DMA portion of the interface is comprised of three
DMA-specific data types and thirteen function calls.
The bus_dma interface also shares two data types with
thebus_space interface.

Thebus_dma functional interface is split into two
categories: mapping calls and memory handling calls.
The function calls themselves may be implemented as
cpp(1) macros.

3This is somewhat misleading. The actual constraint is on the
number of DMA segments the memory may map to.However, this
usually corresponds directly to the number of physical memory seg-
ments which make up the allocated memory.

4The device pager provides support for memory mapping de-
vices into a process’s address space.

5The name is derived from the name of the include file that ex-
ports the interface.

3.1. Datatypes

The first of the two data types shared with the
bus_space interface is thebus_addr_t type, which rep-
resents device bus addresses to be used for CPU access
or DMA, and must be large enough to specify the
largest possible bus address on the system.The second
is the bus_size_t type, which represents sizes of bus
address ranges.

The implementation of DMA on a given host/bus
combination is described by thebus_dma_tag_t. This
opaque type is passed to a bus’s autoconfiguration
machinery by machine-dependent code.The bus layer
in turn passes it down to the device drivers. Thistag is
the first argument to every function in the interface.

Individual DMA segments are described by the
bus_dma_segment_t. This type is a structure with two
publicly accessible members. The first member,
ds_addr, is a bus_addr_t containing the address of a
DMA segment. Thesecond,ds_len, is a bus_size_t
containing the length of the segment.

The third, and probably most important, data type
is thebus_dmamap_t. This type is a pointer to a struc-
ture which describes an individual DMA mapping.The
structure has three public members.The first member,
dm_mapsize is abus_size_t describing the length of the
mapping, when valid. A dm_mapsize of 0 indicates that
the mapping is invalid. Thesecond member, dm_nsegs,
is anint which contains the number of DMA segments
that comprise the mapping. The third public member,
dm_segs, is an array or a pointer to an array of
bus_dma_segment_t structures.

In addition to data types, thebus_dma interface
also defines a set of flags which are passed to some of
the interface’s functions. Two of these flags,
BUS_DMA_WAITOK and BUS_DMA_NOWAIT ,
indicate to the function that waiting for resources to

become available is or is not allowed6. There are also
four placeholder flags,BUS_DMA_BUS1 through
BUS_DMA_BUS4. These flags are reserved for the
individual bus layers, which may need to define special
semantics specific to that bus. Anexample of this is the
ability of VESA local bus devices to use 32-bit DMA
addresses; while the kernel considers such devices to be
logically connected to the ISA bus, they are not limited
to the addressing constraints of other ISA devices. The
placeholder flags allow such special cases to be handled



on a bus-by-bus basis.

3.2. Mappingfunctions

There are eight functions in thebus_dma inter-
face that operate on DMA maps.These can be sub-cat-
egorized into functions that create and destroy maps,
functions that load and unload mappings, and functions
that synchronize maps.

The first two functions fall into the create/destroy
sub-category. The bus_dmamap_create() function cre-
ates a DMA map and initializes it according to the
parameters provided. Theparameters include the maxi-
mum DMA transfer size the DMA map will map, the
maximum number of DMA segments, the maximum
size of any giv en segment, and any DMA boundary lim-
itations. In addition to the standard flags,
bus_dmamap_create() also takes the flag
BUS_DMA_ALLOCNOW . This flag indicates that all
resources necessary to map the maximum size transfer
should be allocated when the map is created, and is use-
ful in case the driver must load the DMA map at a time
where blocking is not allowed, such as in interrupt con-
text. The bus_dmamap_destroy() function destroys a
DMA map, and frees any resources that may be
assigned to it.

The next five functions fall into the load/unload
sub-category. The two basic functions are
bus_dmamap_load() and bus_dmamap_unload(). The
former maps a DMA transfer to or from a linear buffer.
This linear buffer may be mapped into either kernel or a
process’s virtual address space. The latter unloads the
mappings previously loaded into the DMA map. If the
BUS_DMA_ALLOCNOW flag was specified when
the map was created,bus_dmamap_load() will not
block or fail on resource allocation.Similarly, when
the map is unloaded, the mapping resources will not be
freed.

In addition to linear buffers handled by the basic
bus_dmamap_load(), there are three alternate data
buffer structures handled by the interface. The
bus_dmamap_load_mbuf() function operates on mbuf
chains. Theindividual data buffers are assumed to be
in kernel virtual address space. The
bus_dmamap_load_uio() function operates onuio
structures, from which it extracts information about the
address space in which the data resides.Finally, the
bus_dmamap_load_raw() function operates on raw

6Waiting (also called "blocking") is allowed only if the kernel
is running in a process context, as opposed to the interrupt context
used when handling device interrupts.

memory, which is not mapped into any virtual address
space. AllDMA maps loaded with these functions are
unloaded with thebus_dmamap_unload() function.

Finally, the map synchronization sub-category
includes one function:bus_dmamap_sync(). This func-
tion performs the four DMA synchronization operations
necessary to handle caches and DMA bouncing.The
four operations are:

BUS_DMASYNC_PREREAD
BUS_DMASYNC_POSTREAD
BUS_DMASYNC_PREWRITE
BUS_DMASYNC_POSTWRITE

The direction is expressed from the perspective of the
host’s memory. In other words, a device-to-memory
transfer is a read, and a memory-to-device transfer is a
write. Thesynchronization operations are expressed as
flags, so it is possible to combineREAD andWRITE
operations in a single call.This is especially useful for
synchronizing mappings of device control descriptors.
Mixing of PRE andPOST operations is not allowed.

In addition to the map and operation arguments,
bus_dmamap_sync() also takes offset and length argu-
ments. Thisis done in order to support partial syncs.
In the case where a control descriptor is DMA’d to a
device, it may be undesirable to synchronize the entire
mapping, as doing so may be inefficient or even
destructive to other control descriptors.Synchronizing
the entire mapping is supported by passing an offset of
0 and the length specified by the map’sdm_mapsize.

3.3. Memoryhandling functions

There are two sub-categories of functions that
handle DMA-safe memory in thebus_dma interface:
memory allocation and memory mapping.

The first function in the memory allocation sub-
category, bus_dmamem_alloc(), allocates memory
which has the specified attributes. Theattributes that
may be specified are: the size of the memory region to
allocate, the alignment of each segment in the alloca-
tion, any boundary limitations, and the maximum num-
ber of DMA segments that may make up the allocation.
The function fills in a provided array ofbus_dma_seg-
ment_ts and indicates the number of valid segments in
the array. Memory allocated by this interface is raw

memory7; it is not mapped into any virtual address
space. Onceit is no longer in use, it may be freed with



thebus_dmamem_free() function.

In order for the kernel or a user process to access
the memory, it must be mapped either into the kernel
address space or the process’s address space.These
operations are performed by the memory mapping sub-
category of DMA-safe memory handling functions.
The bus_dmamem_map() function maps the specified
DMA-safe raw memory into the kernel address space.
The address of the mapping is returned by filling in a
pointer passed by reference. Memory mapped in this
manner may be unmapped by calling
bus_dmamem_unmap().

DMA-safe raw memory may be mapped into a
process’s address space via a device driver’s mmap()
entry point. In order to do this, the VM system’s device
pager repeatedly calls the driver, once for each page
that is to be mapped.The driver translates the user-
specified mmap offset into a DMA memory offset, and
calls thebus_dmamem_mmap() function to translate the
memory offset into an opaque value to be interpreted by

the pmap module8. The device pager invokes the pmap
module to translate the mmap cookie into a physical
page address which is then mapped into the process’s
address space.

There are currently no methods for the virtual
memory system to specify that an mmap’d area is being
unmapped, or for the device driver to specify to the vir-
tual memory system that a mmap’d region must be
forcibly unmapped (for example, if a hot-swapable
device has been removed from the system).This is
widely regarded as a bug, and may be addressed in a
future version of the NetBSD virtual memory system.
If a change to this effect is made, thebus_dma interface
will have to be adjusted accordingly.

4. Implementation of bus_dma in NetBSD/alpha and
NetBSD/i386

This section is a description of thebus_dma
implementation in two NetBSD ports, NetBSD/alpha
and NetBSD/i386. It is presented as a side-by-side
comparison in order to give the reader a better feel for
the types of details that are being abstracted by the
interface.

7This implies thatbus_dmamap_load_raw() is an appropriate
interface for mapping a DMA transfer to or from memory allocated
by this interface.

8The pmap module is the machine-dependent layer of the
NetBSD virtual memory system.

4.1. Platform requirements

NetBSD/alpha currently supports six implemen-
tations of the PCI bus, each of which implement DMA
differently. In order to understand the design approach
for NetBSD/alpha’s fairly complex bus_dma implemen-
tation, it is necessary to understand the differences
between the bus adapters.While some of these
adapters have similar descriptions and features, the soft-
ware interface to each one is quite different. (Inaddi-
tion to PCI, NetBSD/alpha also supports two Tur-
boChannel DMA implementations on the DEC 3000
models. For simplicity’s sake, we will limit the discus-
sion to the PCI and related busses.)

The first PCI implementation to be supported by
NetBSD/alpha was the DECchip 21071/21072
(APECS)[1]. It is designed to be used with the DEC-
chip 21064 (EV4) and 21064A (EV45) processors.
Systems in which this PCI host bus adapter is found
include the AlphaStation 200, AlphaStation 400, and
AlphaPC 64 systems, as well as some AlphaVME sys-
tems. TheAPECS supports up to two DMA windows,
which may be configured for direct-mapped or scatter-
gather-mapped operation, and uses host RAM for
scatter-gather page tables.

The second PCI implementation to be supported
by NetBSD/alpha was the built-in I/O controller found
on the DECchip 21066[2] and DECchip 21068 family
of Low Cost Alpha (LCA) processors. This processor
family was used in the AXPpci33 and Multia AXP sys-
tems, as well as some AlphaVME systems.The LCA
supports up to two DMA windows, which may be con-
figured for direct-mapped or scatter-gather-mapped
operation, and uses host RAM for scatter-gather page
tables.

The third PCI implementation to be supported by
NetBSD/alpha was the DECchip 21171 (ALCOR)[3],

21172 (ALCOR2), and 21174 (Pyxis)9. These PCI host
bus adapters are found in systems based on the DEC-
chip 21164 (EV5), 21164A (EV56), and 21164PC
(PCA56) processors, including the AlphaStation 500,
AlphaStation 600, and AlphaPC 164, and Digital Per-
sonal Workstation. TheALCOR, ALCOR2, and Pyxis
support up to four DMA windows, which may be con-
figured for direct-mapped or scatter-gather-mapped
operation, and uses host RAM for scatter-gather page
tables.

9While these chipsets are somewhat different from one another,
the software interface is similar enough that they share a common de-
vice driver in the NetBSD/alpha kernel.



The fourth PCI implementation to be supported
by NetBSD/alpha was the Digital DWLPA/DWLPB[4].

This is a TurboLaser-to-PCI10 bridge found on
AlphaServer 8200 and 8400 systems.The bridge is
connected to the TurboLaser system bus via a KFTIA
(internal) or KFTHA (external) I/O adapter. The for-
mer supports one built-in and one external DWLPx.
The latter supports up to four external DWLPxs. Multi-
ple I/O adapters may be present on the TurboLaser sys-
tem bus. EachDWLPx supports up to four primary PCI
busses and has three DMA windows which may be con-
figured for direct-mapped or scatter-gather-mapped
DMA. These three windows are shared by all PCI
busses attached to the DWLPx. TheDWLPx does not
use host RAM for scatter-gather page tables.Instead,
the DWLPx uses on-board SRAM, which must be
shared by all PCI busses attached to the DWLPx. This
is because the store-and-forward architecture of these
systems would cause latency on DMA page table access
to be too high. The DWLPA has 32K of page table
SRAM and the DWLPB has 128K. Since the DWLPx
can snoop access to the page table SRAM, no explicit
scatter-gather TLB invalidation is necessary on this PCI
implementation.

The fifth PCI implementation to be supported by
NetBSD/alpha was the A12C PCI bus on the Avalon
A12 Scalable Parallel Processor[5].This PCI bus is a

secondary I/O bus11, has only a single PCI slot in mez-
zanine form-factor, and is used solely for Ethernet I/O.
This PCI bus is not able to directly access host RAM.
Instead, devices DMA to and from a 128K SRAM
buffer. This is, in essence, a hardware implementation
of DMA bouncing. This is not considered a limitation
of the architecture given the target application of the
A12 system (parallel computation applications which

communicate via MPI12 over the crossbar).

The sixth PCI implementation to be supported by
NetBSD/alpha was the MCPCIA MCBUS-to-PCI
bridge found on the AlphaServer 4100 (Rawhide) sys-
tems. The Rawhide architecture is made up of a
"horse" (the central backplane) and two "saddles" (pri-
mary PCI bus adapters on either side of the backplane).
The saddles may also contain EISA bus adapters.Each

10"TurboLaser" is the name of the system bus on the Al-
phaServer 8200 and 8400 systems.

11The primary I/O bus on the A12 is a crossbar, which is used
to communicate with other nodes in the parallel processor.

12MPI, or the Message Passing Interface, is a standardized API
for passing data and control within a parallel program.

MCPCIA has four DMA windows which may be con-
figured for direct-mapped or scatter-gather-mapped
operation, and uses host RAM for scatter-gather page
tables.

In sharp contrast to the Alpha, the i386 platform
has a very simple PCI implementation; the PCI bus is
capable of addressing the entire 32-bit physical address
space of the PC architecture, and, in general, all PCI
host bus adapters are software compatible.The i386
platform also has WYSIWYG DMA, so no window
translations are necessary. The i386 platform, however,
must contend with DMA bouncing on the ISA bus, due
to ISA’s 24-bit address limitation and lack of scatter-
gather-mapped DMA.

4.2. Datastructures

The DMA tags used by NetBSD/alpha and
NetBSD/i386 are very similar. Both contain thirteen
function pointers for the thirteen functional methods in
the bus_dma interface. TheNetBSD/alpha DMA tag,
however, also has a function pointer used to obtain the
DMA tag for children of the primary I/O bus and an
opaque cookie to be interpreted by the low-level imple-
mentation of these methods.

The opaque cookie used by NetBSD/alpha’s
DMA tag is a pointer to the chipset’s statically-allo-
cated state information.This state information includes
one or more alpha_sgmap structures. The
alpha_sgmap contains all of the state information for a
single DMA window to perform scatter-gather-mapped
DMA, including pointers to the scatter-gather page ta-

ble, theextent map13 that manages the page table, and
the DMA window base.

The DMA map structure contains all of the
parameters used to create the map. (This is a fairly
standard practice among all current implementations of
the bus_dma interface.) In addition to the creation
parameters, the two implementations contain additional
state variables specific to their particular DMA quirks.
For example, the NetBSD/alpha DMA map contains
several state variables related to scatter-gather-mapped
DMA. The i386 port’s DMA map, on the other hand,
contains a pointer to a map-specific cookie.This
cookie holds state information for ISA DMA bouncing.
This state is stored in a separate cookie because DMA

13An extent map is a data structure which manages an arbitrary
number range, providing several resource allocation primitives.
NetBSD has a general-purpose extent map manager which is used by
several kernel subsystems.



bouncing is far less common on the i386 then scatter-
gather-mapped DMA is on the Alpha, since the Alpha
must also do scatter-gather-mapped DMA for PCI if the
system has a large amount of physical memory.

In both the NetBSD/alpha and NetBSD/i386
bus_dma implementations, the DMA segment structure
contains only the public members defined by the inter-
face.

4.3. Codestructure

Both the NetBSD/alpha and NetBSD/i386
bus_dma implementations use a simple inheritance
scheme for code reuse.This is achieved by allowing
the chipset- or bus-specific code layers (i.e. the "mas-
ter" layers) to assemble the DMA tag. When the tag is
assembled, the master layer inserts its own methods in
the function pointer slots where special handling at that
layer is required. For those methods which do not
require special handling, the slots are initialized with
pointers to common code.

The Alpha bus_dma code is broken down into
four basic categories: chipset-specific code, code that
implements common direct-mapped operations, code
that implements common scatter-gather-mapped opera-
tions, and code that implements operations common to
both direct-mapped and scatter-gather-mapped DMA.
Some of the common functions are not called directly
via the tag’s function switch. These functions are
helper functions, and are for use only by chipset front-
ends. Anexample of such a helper is the set of com-
mon direct-mapped DMA load functions.These func-
tions take all of the same arguments as the interface-
defined methods, plus an extra argument: the DMA
window’s base DMA address.

The i386bus_dma implementation, on the other
hand, is broken down into three basic categories: com-
mon implementations ofbus_dma methods, common

helper functions, and ISA DMA front-ends14. All of
the common interface methods may be called directly
from the DMA tag’s function switch. Both the PCI and
EISA DMA tags use this feature; they provide no bus-
specific DMA methods. The ISA DMA front-ends pro-
vide support for DMA bouncing if the system has more
than 16MB of physical memory. If the system has
16MB of physical memory or less, no DMA bouncing
is required, and the ISA DMA front-ends simply

14ISA is currently the only bus supported by NetBSD/i386 with
special DMA requirements. This may change in future versions of
the system.

redirect thebus_dma function calls to the common
implementation.

4.4. Autoconfiguration

The NetBSD kernel’s autoconfiguration system
employs a depth-first traversal of the nodes (devices) in
the device tree. This process is started by machine-
dependent code telling the machine-independent auto-
configuration framework that it has "found" the root
"bus". In the two platforms described here, this root
bus, calledmainbus, is a virtual device; it does not
directly correspond to any physical bus in the system.
The device driver for mainbus is implemented in
machine-dependent code. This driver’s responsibility is
to configure the primary I/O bus or busses.

In NetBSD/alpha, the chipset which implements
the primary I/O bus is considered to be the primary I/O
bus by themainbus layer. Platform-specific code speci-
fies the name of the chipset, and themainbus driver
configures it by "finding" it.When the chipset’s device
driver is attached, it initializes its DMA windows and
data structures.Once this is complete, it "finds" the pri-
mary PCI bus or busses logically attached to the
chipset, and passes the DMA tag for these busses down
to the PCI bus device driver. This driver in turn finds
and configures each device on the PCI bus, and so on.

In the event that the PCI bus driver encounters a
PCI-to-PCI bridge (PPB), the DMA tag is passed
unchanged to the PPB device driver, which in turn
passes it to the secondary PCI bus instance attached to
the other side of the bridge.However, intervention by
machine-dependent code is required if the PCI bus
driver encounters a bridge to a different bus type, such
as EISA or ISA; this bus may require a different DMA
tag. For this reason, all PCI-to-<other bus> bridge
(PCxB) drivers are implemented in machine-dependent
code. Whilethe PCxB drivers could be implemented in
machine-independent code using machine-dependent
hooks to obtain DMA tags, this is not done as the sec-
ondary bus may require special machine-dependent
interrupt setup and routing.Once all of the call-backs
to handle the machine-dependent bus transition details
were implemented, the amount of code that would be
shared would hardly be worth the effort.

When a device driver is associated with a particu-
lar hardware device that the bus driver has found, it is
given sev eral pieces of information needed to initialize
and communicate with the device. Oneof these pieces
of information is the DMA tag. If the driver wishes to
perform DMA, it must remember this tag, which, as
noted previously, is used in every call to thebus_dma
interface.



While the procedure for configuring busses and
devices is essentially identical to the NetBSD/alpha
case, NetBSD/i386 configures the primary I/O busses
quite differently. The PC platform was designed from
the ground up around the ISA bus. EISAand PCI are,
in many ways, very similar to ISA from a device
driver’s perspective. All three have the concept of I/O-

mapped15 and memory-mapped space. The hardware
and firmware in PCs typically map these busses in such
a way that initialization of the bus’s adapter by operat-
ing system software is not necessary. For this reason, it
is possible to consider PCI, EISA, and ISA to all be pri-
mary I/O busses, from the autoconfiguration perspec-
tive.

The NetBSD/i386mainbus driver configures the
primary I/O busses in order of descending priority: PCI
first, then EISA, and finally, ISA. Themainbus driver
has direct access to each bus’s DMA tags, and passes
them down to the I/O bus directly. In the case of EISA
and ISA, themainbus layer only attempts to configure
these busses if they were not found during the PCI bus
configuration phase; NetBSD/i386, as a matter of cor-
rectness, identifies PCI-to-EISA (PCEB) and PCI-to-
ISA (PCIB) bridges, and assigns autoconfiguration
nodes in the device tree to them. The EISA and ISA
busses are logically attached to these nodes, in a way
very similar to that of NetBSD/alpha.The bridge driv-
ers also have direct access to the bus’s DMA tags, and
pass them down to the I/O bus accordingly.

4.5. Exampleof underlying operation

This subsection describes the operation of the
machine-dependent code which implements the
bus_dma interface as used by a device driver for a
hypothetical DES encryption card.While this is not the
original application ofbus_dma, it provides an example
which is much easier to understand; the application for
which the interface was developed is a high-perfor-
mance hierarchical mass storage system, the details of
which are overwhelming.

Not all of the details of a NetBSD device driver
will be described here, but rather only those details
which are important within the scope of DMA.

For the purpose of our example, the card comes
in both PCI and ISA models. Since we describe two
platforms, there are four permutations of actual exam-
ples. They will be tagged with the following indicators:

15I/O-mapped space is accessed with special instructions on In-
tel processors.

[Alpha/ISA]
[Alpha/PCI]
[i386/ISA]
[i386/PCI]

We will assume that the[i386/ISA] platform has
more than 16MB of RAM, so transfers might have to be
bounced if DMA-safe memory is not used explicitly.
We will also assume that the direct-mapped DMA win-
dow on the [Alpha/PCI] platform is capable of
addressing all of system RAM.

Please note that in the description of map syn-
chronization, only cases which require special handing
will be described. In both the [Alpha/ISA] and
[Alpha/PCI] cases, all synchronizations cause the
CPU’s write buffer to be drained using the Alpha’s
mb[6] instruction. All synchronizations in the
[i386/PCI] case are no-ops, as are synchronizations of
DMA-safe memory in the[i386/ISA] case.

4.5.1. Hardware overview

The card is a bus master, and operates by reading
a fixed-length command block via DMA.There are
three commands: SET KEY , ENCRYPT, and
DECRYPT. Commands are initiated by filling in the
command block, and writing the DMA address of the
command block to the card’s dmaAddr register. The
command block contains 6 32-bit words:cbCommand,
cbStatus, cbInAddr, cbInCount, cbOutAddr, and cbOut-
Count. The cbInAddr andcbOutAddr members are the
DMA addresses of software scatter-gather lists used by
the card’s DMA engine. The cbInCount and cbOut-
Count members are the number of scatter-gather entries
in their respective lists. Eachscatter-gather entry con-
tains a DMA address and a length, both 32-bit words.

When the card processes a request, it reads the
command block via DMA. It then examines the com-
mand block to determine which action to take. In the
case of all three supported commands, it reads the input
scatter-gather list at DMA addresscbInAddr for length
cbInCount * 8. It then switches the input to the appro-
priate processing engine. In the case of theSET KEY
command, the scatter-gather list is used to DMA the
DES key into SRAM located on the card.For all other
commands, the input is directed at the pipelined DES
engine, switched into either encrypt or decrypt mode.
The DES engine then reads the output scatter-gather list
specified bycbOutAddr for cbOutCount * 8 bytes.
Once the DES engine has all of the DMA addresses, it
then begins the cycle of input-process-output until all
data has been consumed. Once any command is fin-
ished, a status word is written tocbStatus, and an



interrupt is delivered to the host. The driver software
must read this word to determine if the command com-
pleted successfully.

4.5.2. Device driver overview

The device driver for this DES card provides
open(), close(), and ioctl() entry points. The driver uses
DMA to the user address space for high performance.
When a user issues a request via the ioctl corresponding
to the requested operation, the driver places it on a work
queue. Theioctl() system call returns immediately,
allowing the application to run or block viasigsus-
pend(). If the card is currently idle, the driver immedi-
ately issues the command to the card. When the job is
finished, the card interrupts, and the driver notifies the
user that the request has completed via theSIGIO sig-
nal. If there are more jobs on the work queue, the next
job is removed from the queue and started, until there
are no more jobs.

4.5.3. Driver i nitialization

When the driver instance is created (attached), it
must create and initialize the data structures necessary
for operation. This driver uses multiple DMA maps:
one for the control structures (control block and scatter-
gather lists), and many for data submitted by user
requests. Thedata maps are kept in the driver job
queue entries, which are created when jobs are submit-
ted.

Next the driver must allocate DMA-safe memory
for the control structures.The driver will allocate three
pages of memory viabus_dmamem_alloc(). For sim-
plicity, the driver will request a single memory segment.
For all platforms and busses in this example, this opera-
tion simply calls a function in the virtual memory sys-
tem that allocates memory with the requested con-
straints. Inthe [i386/ISA] case, the ISA layer inserts
itself into the call graph to specify a range of 0 - 16MB.
All other cases simply specify the entire present physi-
cal memory range.

A small piece of this memory will be used for the
command block. The rest of the memory will be
divided evenly between the two scatter-gather lists.
This memory is then mapped into kernel virtual address
space using bus_dmamem_map() with the
BUS_DMA_COHERENT flag, and the kernel pointers
to the three structures are initialized. When the mem-
ory is mapped on the i386, theBUS_DMA_COHER-
ENT flag causes the cache-inhibit bits to be set in the
PTEs. Nospecial handing of this flag is required on the
Alpha. However, in the Alpha case, since there is only
a single segment, the memory is mapped via the

Alpha’s direct-mapped kernel segment; no use of kernel
virtual address space is required.

Finally, the driver loads the control structure
DMA map by passing the kernel virtual address of the
memory tobus_dmamap_load(). To make it easier to
start transactions, the driver caches the DMA addresses
of the various control structures (by adding their offsets
to the memory’s DMA address). In all cases, the under-
lying load function steps through each page in the vir-
tual address range, extracting the physical address from
the pmap module and compacting the segments where
possible. Sincethe memory was allocated as a single
segment, it maps to a single DMA segment.

4.5.4. Exampletransaction

Let’s suppose that the user has already set the
key, and now wishes to use it to encrypt a data buffer.
The calling program packages up the request, providing
a pointer to the input buffer, output buffer, and status
word, all in user space, and issues the "encrypt buffer"
ioctl.

Upon entry into the kernel, the driver locks the
user’s buffer to prevent the data from being paged out
while the DMA is in progress.A job queue entry is
allocated, and two DMA maps are created for the job
queue entry, one for the input buffer and one for the
output buffer. In all cases, this allocates the standard
DMA map structure. In the[i386/ISA] case, an ISA
DMA cookie for each map is also allocated.

Once the queue entry has been allocated, it must
be initialized. The first step in this process is to load
the DMA maps for the input and output buffers. Since
this process is essentially identical for input and output,
only the actions for the input buffer’s map are described
here.

On [Alpha/PCI] and [i386/PCI], the underlying
code traverses the user’s buffer, extracting the physical
addresses for each page.For [Alpha/PCI] , the DMA
window base is added to this address. The address and
length of the segment are placed into the map’s DMA
segment list. Segments are concatenated when possi-
ble.

On [Alpha/ISA] , a very similar process occurs.
However, rather than placing the physical addresses into
the map’s segment list, some scatter-gather-mapped
DMA address space is allocated and the addresses
placed into the corresponding page table entries.Once
this process is complete, a single DMA segment is
placed in the map’s segment list, indicating the begin-
ning of the scatter-gather-mapped area.



The [i386/ISA] case also traverses the user’s
buffer, but twice. In the first pass, the buffer is checked
to ensure that it does not have any pages above the
16MB threshold. If it does not, then the procedure is
identical to the[i386/PCI] case. However, for the sake
of example, the buffer has pages outside the threshold
so the transfer must be bounced. At this point, a
bounce buffer is allocated. Since we are still in the
process’s context, this allocation may block.A pointer
to the bounce buffer is stored in the ISA DMA cookie,
and the physical address of the bounce buffer is placed
in the map’s segment list.

The next order of business is to enqueue or begin
the transfer. To keep the example simple, we will
assume that no other transfers are pending. The first
step in this process is to initialize the control block with
the cached DMA addresses of the card’s scatter-gather
lists. Theselists are also initialized with the contents of
the DMA maps’ segment list. Before we tell the card to
begin transferring data, we must synchronize the DMA
maps.

The first map to be synchronized is the input
buffer map. This is aPREWRITE operation. Inthe
[i386/ISA] case, the user’s buffer is copied from the

user’s address space into the bounce buffer16. The next
map to be synchronized is the output buffer map. This
is a PREREAD operation. Finally, the control map is
synchronized. Sincethe status will be read back from
the control block after the transaction is complete, this
synchronization is aPREREAD|PREWRITE .

At this point the DMA transaction may occur.
The card is started by writing the cached DMA address
of the control block into the card’s dmaAddr register.
The driver returns to user space, and the process waits
for the signal indicating that the transaction has com-
pleted.

Once the transaction has completed, the card
interrupts the host. The interrupt handler is now
responsible for finishing the DMA sequence and notify-
ing the requesting process that the operation is com-
plete.

16This is not currently implemented, as it required substantial
changes to the virtual memory system.This is because thecopyin()
andcopyout() functions only operate on the current process’s context,
which may not be available at the time of the bounce. Those changes
to the virtual memory system have now been made, so support for
bouncing to and from user space will appear in a future release of
NetBSD. Supportfor bouncing from kernel space is currently sup-
ported, however.

The first task to perform is to synchronize the
input buffer map. This is aPOSTWRITE . Next we
synchronize the output buffer map. This is a
POSTREAD. In the [i386/ISA] case, the contents of
the output bounce buffer are copied to the user’s

buffer17. Finally, we synchronize the control map.This
is aPOSTREAD|POSTWRITE.

Now that the DMA maps have been synchro-
nized, they must be unloaded. In the[Alpha/PCI] and
[i386/PCI] cases, there are no resources to be freed; the
mapping is simply marked invalid. In the [Alpha/ISA]
case, the scatter-gather-mapped DMA resources are
released. Inthe [i386/ISA] case, the bounce buffer is
freed.

Since the user’s buffer is no longer in use, it is
unlocked by the device driver. Now the process may be
signaled that I/O has completed. The last task to per-
form is to destroy the input and output buffer DMA
maps and the job queue entry.

5. Conclusions

The bus_dma interface was introduced into the
NetBSD kernel at development version 1.2G, just
before the release cycle for NetBSD 1.3 began. When
the code was committed to the NetBSD master sources,
several drivers, mostly for SCSI controllers, were con-
verted to the interface at the same time. (All of these
drivers had been previously converted to use the
bus_space interface.) Notonly did these drivers pro-
vide an example of the correct use ofbus_dma, but they
provided functionality that had not previously existed in
the NetBSD kernel: support for bus mastering ISA
devices in PCs with more than 16MB of RAM.

The first real test of the interface on the Alpha
platform came by installing a bus mastering ISA device
(an Adaptec 1542 SCSI controller) in an AXPpci33
computer. After addressing a small bug in the Alpha
implementation of bus_dmamap_load(), the device
worked flawlessly.

When converting device drivers to use the new
interface, developers discovered that a fair amount of
mostly-similar code could be removed from each driver
converted. Thecode in question was the loop that built
the software scatter-gather list. In some cases, the driv-
ers performed noticeably better, due to the fact that the
implementation of this loop withinbus_dmamap_load()
is more efficient and supports segment concatenation.

17The same caveat applies here as to the[i386/ISA]
PREWRITE case for the input map.



Most of the machine-independent drivers that use
DMA have been converted to the new interface, and
more platforms have implemented the necessary back-
ends. Theresults have been very encouraging.Nearly
ev ery device/platform combination that has been tested
has worked without additional modifications to the
device driver. The few exceptions to this have generally
been to handle differences in host and device byte-
order, and are not directly related to DMA.

Thebus_dma interface has also paved the way for
additional machine-independent bus autoconfiguration
frameworks, such as for VME.Eventually, this will
help support PCI-to-VME bridges, and allow Sun,
Motorola, and Intel systems to share common VME
device drivers.

We hav e found the bus_dma interface to be a
major architectural benefit in the NetBSD kernel,
greatly simplifying the process of porting the kernel to
new platforms, and making portable device driver
development considerably easier. In short, the abstrac-
tion has delivered what it was designed to deliver: a
means of supporting a wide range of platforms with
maximum code reuse.

6. References

[1] Digital Equipment Corporation,DECchip
21071 and DECchip 21072 Core Logic Chipsets Data
Sheet, DEC order number EC-QAEMA-TE, November
1994.

[2] Digital Equipment Corporation,DECchip
21066 Alpha AXP Microprocessor Data Sheet, DEC
order number EC-N0617-72, May 1994.

[3] Digital Equipment Corporation,DECchip
21171 Core Logic Chipset Technical Reference Manual,
DEC order number EC-QE18B-TE, September 1995.

[4] Digital Equipment Corporation,DWLPA and
DWLPB PCI Adapter Technical Manual, DEC order
number EK-DWLPX-TM, July 1996.

[5] H. Ross Harvey, Avalon A12 Parallel Super-
computer Theory of Operation, Av alon Computer Sys-
tems, Inc., October 1997.

[6] Richard L. Sites and Richard T. Witek, Alpha
AXP Architecture Reference Manual, Second Edition,
Digital Press, 1995.

7. Obtaining NetBSD

More information about NetBSD, including
information on where to obtain sources and binaries for

the NetBSD operating system itself, may be found at
http://www.NetBSD.org/.

Updates to this paper may appear periodically,
and can be found athttp://www.NetBSD.org/Docu-
mentation/research/.

8. Acknowledgments

I would like to thank the following individuals for
their very constructive input and insight during the
bus_dma design phase: Chris Demetriou, Charles Han-
num, Ross Harvey, Matthew Jacob, Jonathan Stone, and
Matt Thomas.

I would also like to extend special thanks to Chris
Demetriou, Lonhyn Jasinskyj, Kevin Lahey, Yvonne
Malloy, David McNab, and Harry Waddell for the time
they spent reviewing and helping me to polish this
paper.

9. About the author

Jason R. Thorpe is a Network Systems Engineer
at the Numerical Aerospace Simulation Facility at
NASA’s Ames Research Center. His professional inter-
ests include design and implementation of portable
operating systems, high-speed computer networks, and
network protocols. In addition to his work on the
NetBSD operating system in support of network and
mass storage system development projects at the NAS
facility, he is an active participant in the Internet Engi-
neering Task Force. Hehas been a contributor to the
NetBSD Project since mid-1993, and has run nearly
ev ery port at one time or another. He currently main-
tains NetBSD’s hp300 port, and is a member of the
NetBSD Core Group.

The author may be reached at: Numerical Aero-
space Simulation Facility, Mail Stop 258-5, NASA
Ames Research Center, Moffett Field, CA 94035, or via
electronic mail atthorpej@nas.nasa.gov.


